Đồ thị hàm số \(y = \frac{{4x - 3}}{{2{x^2} - x - 1}}\) có bao nhiêu đường tiệm cận 

Câu hỏi :

Đồ thị hàm số \(y = \frac{{4x - 3}}{{2{x^2} - x - 1}}\) có bao nhiêu đường tiệm cận 

A. 1

B. 2

C. 3

D. 4

* Đáp án

C

* Hướng dẫn giải

\(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{4x - 3}}{{2{x^2} - x - 1}} =  - \infty ;\)

\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{4x - 3}}{{2{x^2} - x - 1}} =  + \infty \)
\(\mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ - }} \frac{{4x - 3}}{{2{x^2} - x - 1}} =  + \infty ;\)

\(\mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ + }} \frac{{4x - 3}}{{2{x^2} - x - 1}} =  - \infty\)

Suy ra x = 1 và là hai tiệm cận đứng của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\frac{4}{x} - \frac{3}{{{x^2}}}}}{{2 - \frac{1}{x} - \frac{1}{{{x^2}}}}} = 0;\)

\(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{\frac{4}{x} - \frac{3}{{{x^2}}}}}{{2 - \frac{1}{x} - \frac{1}{{{x^2}}}}} = 0\)

là tiệm cận ngang của đồ thị hàm số.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 12 Chương 1 Bài 1 Đường tiệm cận

Số câu hỏi: 12

Copyright © 2021 HOCTAP247