A. \(V = \pi \int\limits_0^2 {\left( {2 - x} \right)\,dx + \pi \int\limits_0^2 {{x^2}\,dx} } \)
B. \(V = \pi \int\limits_0^2 {\left( {2 - x} \right)\,dx}\)
C. \(V = \pi \int\limits_0^1 {x\,dx + \pi \int\limits_1^2 {\sqrt {2 - x} \,dx} }\)
D. \(V = \pi \int\limits_0^1 {{x^2}\,dx + \pi \int\limits_1^2 {\left( {2 - x} \right)\,dx} }\)
A. 29
B. 5
C. 19
D. 40
A. \(\dfrac{4}{3}\)
B. \(\dfrac{3}{2}\)
C. \(\dfrac{5}{3}\)
D. \(\dfrac{{23}}{{15}}\).
A. \(\left| {\int\limits_a^b {f(x)\,dx} } \right| \ge \int\limits_a^b {|f(x)|\,dx} \).
B. \(\left| {\int\limits_a^b {f(x)\,dx} } \right| \le \int\limits_a^b {|f(x)|\,dx} \).
C. \(\left| {\int\limits_a^b {f(x)\,dx} } \right| = \int\limits_a^b {|f(x)|\,dx} \).
D. Cả 3 phương án trên đều sai.
A. \( - \cot x - 2\tan x + C\).
B. \(\cot x - 2\tan x + C\).
C. \(\cot x + 2\tan x + C\).
D. \( - \cot x + 2\tan x + C\).
A. (1 ; 3 ; 2).
B. (2 ; - 3 ; 1).
C. (1 ; - 1 ; 1).
D. Một kết quả khác.
A. \(\left| {\int\limits_{ - 1}^4 {f(x)\,dx} } \right|\).
B. \(\int\limits_{ - 1}^4 {f(x)\,dx} \).
C. \(\int\limits_{ - 1}^0 {f(x)\,dx + \int\limits_0^4 {f(x)\,dx} } \).
D. \(\int\limits_{ - 1}^0 {f(x)\,dx - \int\limits_0^4 {f(x)\,dx} } \).
A. \(I = \int\limits_0^3 {\sqrt u \,du} \).
B. \(I = \dfrac{2}{3}\sqrt {27} \).
C. \(\int\limits_1^2 {\sqrt u \,du} \).
D. \(I = \dfrac{2}{3}{u^{\dfrac{3}{2}}}\left| \begin{array}{l}3\\0\end{array} \right.\).
A. \(F(x) = {e^x} - 3{e^{ - 3x}} + C\).
B. \(F(x) = {e^x} + 3{e^{ - x}} + C\).
C. \(F(x) = {e^x} - 3{e^{ - x}} + C\).
D. \(F(x) = {e^x} + C\).
A. I = 27
B. I = 3
C. I = 9
D. I = 1
A. \(\int {\left[ {f(x).g(x)} \right]} \,dx = \int {f(x)\,dx.\int {g(x)\,dx} } \)
B. \(\int {k.f(x)\,dx = k\int {f(x)\,dx} } \)
C. \(\int {f'(x)\,dx} = f(x) + C\)
D. \(\int {\left[ {f(x) \pm g(x)} \right]\,dx = \int {f(x)\,dx \pm \int {g(x)\,dx} } } \)
A. 0
B. -1
C. 1
D. 2
A. \(2\ln \dfrac{1}{3}\).
B. \(2\ln 3\).
C. \(\dfrac{1}{2}\ln 3\).
D. \(\dfrac{1}{2}\ln \dfrac{1}{3}\).
A. \(\dfrac{{{e^2} - 1}}{2}\).
B. \(\dfrac{{{e^2} + 1}}{2}\).
C. \(\dfrac{{{e^2} - 3}}{4}\).
D. \(\dfrac{{{e^2} - 3}}{2}\).
A. \(I = \dfrac{2}{3}{x^3} + \dfrac{1}{3}{x^{ - \dfrac{2}{3}}} - \tan x + C\).
B. \(I = \dfrac{2}{3}{x^3} - \dfrac{3}{2}{x^{\dfrac{2}{3}}} - \tan x + C\).
C. \(I = \dfrac{2}{3}{x^3} - \dfrac{2}{3}\sqrt[3]{{{x^2}}} - \tan x + C\).
D. \(I = \dfrac{2}{3}{x^3} - \dfrac{3}{2}{x^{\dfrac{2}{3}}} + \tan x + C\).
A. \(\dfrac{3}{2}\)
B. \(\dfrac{{ - 3}}{2}\)
C. \(\dfrac{1}{6}\)
D. \( - \dfrac{1}{6}\).
A. y = sin + 1.
B. y = cosx.
C. y = cotx.
D. y = - cosx.
A. \(\dfrac{1}{3}{\left( {3\ln x + 2} \right)^5} + C\).
B. \(\dfrac{1}{{15}}{\left( {3\ln x + 2} \right)^5} + C\).
C. \(\dfrac{{{{\left( {3\ln x + 2} \right)}^5}}}{5} + C\).
D. \(\dfrac{1}{5}{\left( {3\ln x + 2} \right)^5} + C\).
A. \(\dfrac{{2 - e}}{e}\).
B. e
C. \(\dfrac{{e - 2}}{e}\)
D. 2e
A. \(\int\limits_a^b {f(3x + 5)\,dx = F(3x + 5)\left| \begin{array}{l}b\\a\end{array} \right.} \).
B. \(\int\limits_a^b {f(x + 1)\,dx = F(x)\left| \begin{array}{l}b\\a\end{array} \right.} \).
C. \(\int\limits_a^b {f(2x)\,dx = 2\left( {F(b) - F(a)} \right)} \).
D. \(\int\limits_a^b f (x)\,dx = F(b) - F(a)\).
A. \( - \dfrac{3}{4}\).
B. \(\dfrac{3}{4}\)
C. \( - \dfrac{4}{3}\)
D. \(\dfrac{4}{3}\).
A. \(\int\limits_a^b {f(x)\,dx = F(a) + F(b)} \)
B. \(\int\limits_a^b {f(x)\,dx = F(a) - F(b)}\)
C. \(\int\limits_a^b {f(x)\,dx = F(b) - F(a)}\)
D. \(\int\limits_a^b {f(x)\,dx = f(b) - f(a)} \)
A. \(Q\left( { - 6;5;2} \right)\).
B. \(Q\left( {6;5;2} \right)\).
C. \(Q\left( {6; - 5;2} \right)\).
D. \(Q\left( { - 6; - 5; - 2} \right)\).
A. tam giác có ba góc nhọn.
B. tam giác cân đỉnh \(A\).
C. tam giác vuông đỉnh \(A\).
D. tam giác đều.
A. \(D\left( { - 4;5; - 1} \right)\).
B. \(D\left( {4;5; - 1} \right)\).
C. \(D\left( { - 4; - 5; - 1} \right)\).
D. \(D\left( {4; - 5;1} \right)\)
A. 2
B. -3
C. 1
D. 3
A. \(M'\left( {2;5;0} \right)\).
B. \(M'\left( {0; - 5;0} \right)\).
C. \(M'\left( {0;5;0} \right)\).
D. \(M'\left( { - 2;0;0} \right)\).
A. \(M'\left( {1;2;0} \right)\).
B. \(M'\left( {1;0; - 3} \right)\).
C. \(M'\left( {0;2; - 3} \right)\).
D. \(M'\left( {1;2;3} \right)\).
A. \(\sqrt {29} \)
B. \(\sqrt 5 \).
C. 2
D. \(\sqrt {26} \).
A. \(\overrightarrow {IA} = \overrightarrow {IB} + \overrightarrow {IC} .\)
B. \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {CI} = \overrightarrow 0 .\)
C. \(\overrightarrow {IA} + \overrightarrow {BI} + \overrightarrow {IC} = \overrightarrow 0 .\)
D. \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} = \overrightarrow 0 .\)
A. \(\overrightarrow b \bot \overrightarrow c .\)
B. \(\overrightarrow {\left| a \right|} = \sqrt 2 .\)
C. \(\overrightarrow {\left| c \right|} = \sqrt 3 .\)
D. \(\overrightarrow a \bot \overrightarrow b .\)
A. \(\sqrt 6 \).
B. 2
C. \(-\sqrt 6 \).
D. 4
A. \(\overrightarrow i \)
B. \(\overrightarrow j \)
C. \(\overrightarrow k \)
D. \(\overrightarrow 0 \)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247