A. \({x^2}.\sin x + x.\cos x - 2\sin x + C\).
B. \({x^2}.\sin x + 2x.\cos x - 2\sin x + C\).
C. \(x.\sin x + 2x.\cos x + C\).
D. \(2x.\cos x + \sin + C\).
A. \( - \dfrac{{{\pi ^2}}}{4}\)
B. \(\pi^2\)
C. \(\dfrac{{{\pi ^2}}}{2}\)
D. \(- \dfrac{{{\pi ^2}}}{2}\)
A. \( - \dfrac{1}{4}\cos 2x + C\)
B. \(\dfrac{1}{2}{\sin ^2}x + C\)
C. \( - \dfrac{1}{2}{\cos ^2}x + C\)
D. \(\dfrac{1}{2}\cos 2x + C\)
A. 32
B. 34
C. 46
D. 40
A. \(- \dfrac{1}{x} - \dfrac{2}{{{x^2}}} - \dfrac{4}{{3{x^2}}} + C\)
B. \(\dfrac{1}{x} - \dfrac{2}{{{x^2}}} - \dfrac{4}{{3{x^2}}} + C\)
C. \(- \dfrac{1}{x} - \dfrac{1}{{{x^2}}} - \dfrac{1}{{{x^3}}} + C\)
D. \(- \dfrac{1}{x} + \dfrac{2}{{{x^2}}} - \dfrac{4}{{3{x^2}}} + C\)
A. \({V_y} = 12\pi\)
B. \({V_y} = 8\pi\)
C. \({V_y} = 18\pi \)
D. \({V_y} = 16\pi\)
A. \({\left( {a - x} \right)^{\dfrac{5}{2}}} + ax + C\)
B. \(- \dfrac{2}{5}{\left( {a - x} \right)^{\dfrac{5}{2}}} + ax + C\)
C. \({\left( {a - x} \right)^{\dfrac{5}{2}}} - a + C\)
D. \(\dfrac{2}{5}{\left( {a - x} \right)^{\dfrac{5}{2}}} - \dfrac{2}{3}a{\left( {a - x} \right)^{\dfrac{3}{2}}} + C\)
A. \(\dfrac{6}{7}\)
B. \(\dfrac{7}{6}\)
C. 1
D. 2
A. \(\dfrac{1}{{x{{\ln }^3}x}}\)
B. \(x{\ln ^3}x\)
C. \(\dfrac{{{x^2}}}{{{{\ln }^3}x}}\)
D. \(\dfrac{{{{\ln }^3}x}}{x}\)
A. \({e^3} - \dfrac{7}{2}{e^2} + \ln \left( {1 + e} \right)\)
B. \({e^2} - 7e + \dfrac{1}{{e + 1}}\)
C. \({e^3} - \dfrac{7}{2}{e^2} - \dfrac{1}{{{{\left( {e + 1} \right)}^2}}}\)
D. \({e^3} - 7{e^2} - \ln \left( {1 + e} \right)\)
A. 6
B. 46
C. 26
D. 12
A. \(\int\limits_a^b {\left| {f(a)} \right|\,dx}\)
B. \( - \int\limits_a^b {f(x)\,dx}\)
C. \(\int\limits_b^a {f(x)\,dx}\)
D. \(\int\limits_a^b {f(x)\,dx}\)
A. 24
B. -7
C. -4
D. 8
A. \(\int\limits_a^b {f(x)\,dx = \int\limits_b^a {f(x)\,dx} }\)
B. \(\int\limits_a^b {k.dx = k\left( {b - a} \right),\,\forall k \in R}\)
C. \(\int\limits_a^b {f(x)\,dx = - \int\limits_b^a {f(x)\,dx} }\)
D. \(\int\limits_a^b {f(x)\,dx = \int\limits_a^c {f(x)\,dx + \int\limits_c^b {f(x)\,dx\,,\,\,\,c \in [a;b]} } }\)
A. \(I = \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{2t}}{{1 + 1}}\,dt} \).
B. \(I = \int\limits_{\dfrac{0}{2}}^{\dfrac{x}{4}} {\dfrac{{2t}}{{1 + 1}}\,dt} \).
C. \(I = - \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{2t}}{{1 + 1}}\,dt} \).
D. \(I = - \int\limits_{\dfrac{0}{2}}^{\dfrac{x}{4}} {\dfrac{{2t}}{{1 + 1}}\,dt} \).
A. \(\left\{ \begin{array}{l}A = - 2\\B = - \dfrac{2}{\pi }\end{array} \right.\).
B. \(\left\{ \begin{array}{l}A = 2\\B = - \dfrac{2}{\pi }\end{array} \right.\).
C. \(\left\{ \begin{array}{l}A = - 2\\B = \dfrac{2}{\pi }\end{array} \right.\).
D. \(\left\{ \begin{array}{l}B = 2\\A = - \dfrac{2}{\pi }\end{array} \right.\)
A. \(I = \dfrac{1}{2}\)
B. \(I = \dfrac{{3{e^2} + 1}}{4}\).
C. \(I = \dfrac{{{e^2} + 1}}{4}\).
D. \(I = \dfrac{{{e^2} - 1}}{4}\).
A. \(4\cos x + \ln x + C\).
B. \(4\cos x + \dfrac{1}{x} + C\).
C. \(4\sin x - \dfrac{1}{x} + C\).
D. \(4\sin x + \dfrac{1}{x} + C\).
A. \(2\ln 2 + 3\).
B. \(\dfrac{{\ln 2}}{2} + \dfrac{3}{4}\).
C. \(\ln 2 + \dfrac{3}{2}\).
D. \(\ln 2 + 1\).
A. \(I = 2\int\limits_8^9 {\sqrt u du} \).
B. \(I = \dfrac{1}{2}\int\limits_8^9 {\sqrt u \,du} \).
C. \(I = \int\limits_8^9 {\sqrt u \,du} \).
D. \(I = \int\limits_9^8 {\sqrt u \,du} \)
A. \(\ln \dfrac{3}{2}\)
B. \(\dfrac{1}{2}\)
C. ln 2
D. ln 2 + 1
A. \(\pi \int\limits_0^\pi {{{\sin }^2}x} \,dx\).
B. \(\dfrac{\pi }{2}\int\limits_0^\pi {{{\sin }^2}x} \,dx\).
C. \(\dfrac{\pi }{2}\int\limits_0^\pi {{{\sin }^4}x} \,dx\).
D. \(\pi \int\limits_0^\pi {\sin x} \,dx\).
A. \(I = 2\int\limits_0^1 {dt} \).
B. \(I = 2\int\limits_0^{\dfrac{\pi }{4}} {dt} \).
C. \(I = \int\limits_0^{\dfrac{\pi }{3}} {dt} \).
D. \(I = 2\int\limits_0^{\dfrac{\pi }{6}} {dt} \).
A. -2
B. \(\dfrac{{13}}{6}\)
C. \(\ln 2 - \dfrac{3}{4}\)
D. \(\ln 3 - \dfrac{3}{5}\).
A. \(\int {\dfrac{{dx}}{{6x - 2}} = 6\ln |6x - 2| + C} \).
B. \(\int {\dfrac{{dx}}{{6x - 2}} = \dfrac{1}{6}\ln |6x - 2| + C} \).
C. \(\int {\dfrac{{dx}}{{6x - 2}} = \dfrac{1}{2}\ln |6x - 2| + C} \).
D. \(\int {\dfrac{{dx}}{{6x - 2}} = \ln |6x - 2| + C} \).
A. \(\overrightarrow {OM} = x.\overrightarrow i + y.\overrightarrow j + z.\overrightarrow k \)
B. \(\overrightarrow {OM} = z.\overrightarrow i + y.\overrightarrow j + x.\overrightarrow k \)
C. \(\overrightarrow {OM} = x.\overrightarrow j + y.k + z.\overrightarrow i \)
D. \(\overrightarrow {OM} = x.\overrightarrow k + y.\overrightarrow j + z.\overrightarrow i \)
A. \(M\left( {1;1; - 3} \right)\)
B. \(M\left( {1; - 1; - 3} \right)\)
C. \(M\left( {1; - 3;1} \right)\)
D. \(M\left( { - 1; - 3;1} \right)\)
A. -1
B. 1
C. 2
D. -2
A. \(N\left( {x;y;z} \right)\)
B. \(N\left( {x;y;0} \right)\)
C. \(N\left( {0;0;z} \right)\)
D. \(N\left( {0;0;1} \right)\)
A. \(C\left( { - 1;3;2} \right)\)
B. \(C\left( {11; - 2;10} \right)\)
C. \(C\left( {5; - 6;2} \right)\)
D. \(C\left( {13; - 8;8} \right)\)
A. \(G\left( {0;\dfrac{3}{4};1} \right)\)
B. \(G\left( {0;3;4} \right)\)
C. \(G\left( {\dfrac{1}{2}; - \dfrac{1}{2}; - \dfrac{1}{2}} \right)\)
D. \(G\left( {0;\dfrac{3}{2};2} \right)\)
A. \(\overrightarrow u = k\overrightarrow n \left( {k \ne 0} \right)\)
B. \(\overrightarrow n = k\overrightarrow u \)
C. \(\overrightarrow n .\overrightarrow u = 0\)
D. \(\overrightarrow n .\overrightarrow u = \overrightarrow 0 \)
A. \(d//\left( P \right)\)
B. \(d \subset \left( P \right)\)
C. \(\left( P \right) \subset d\)
D. \(d \bot \left( P \right)\)
A. \(\left( { - 1;1; - 3} \right)\)
B. \(\left( {1;2;0} \right)\)
C. \(\left( {2; - 2;3} \right)\)
D. \(\left( {2; - 2; - 3} \right)\)
A. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \)
B. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right]\)
C. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \overrightarrow 0 \)
D. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right]\)
A. d // d'
B. \(d \equiv d'\)
C. d cắt d'
D. A hoặc B đúng
A. \(\left\{ \begin{array}{l}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\end{array} \right.\)
B. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \)
C. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\)
D. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \)
A. d // d'
B. \(d \equiv d'\)
C. d cắt d'
D. d chéo d'
A. d // d'
B. \(d \bot d'\)
C. \(d \equiv d'\)
D. d cắt d'
A. cắt nhau
B. song song
C. chéo nhau
D. trùng nhau
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247