Elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\) có độ dài trục lớn bằng:
A. 5;
B. 10;
C. 25;
D. 50.
Elip \(\left( E \right):4{x^2} + 16{y^2} = 1\) có độ dài trục lớn bằng:
A. 2;
B. 4;
C. 1;
D. \(\frac{1}{2}.\)
Elip \(\left( E \right):{x^2} + 5{y^2} = 25\) có độ dài trục lớn bằng:
A. 1;
B. 2;
C. 5;
D. 10.
Elip \(\left( E \right):\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\) có độ dài trục bé bằng:
A. 8;
B. 10;
C. 16;
D. 20.
Elip \(\left( E \right):\frac{{{x^2}}}{{16}} + {y^2} = 4\) có tổng độ dài trục lớn và trục bé bằng:
A. 5;
B. 10;
C. 20;
D. 40.
A. Cho điểm F cố định và một đường thẳng \(\Delta \) cố định không đi qua F. Hypebol (H) là tập hợp các điểm M sao cho khoảng cách từ M đến F bằng khoảng cách từ M đến \(\Delta \);
B. Cho \({F_1},{\rm{ }}{F_2}\) cố định với \({F_1}{F_2} = \) 2c (c > 0). Hypebol (H) là tập hợp điểm M sao cho \(\left| {M{F_1} - M{F_2}} \right| = 2a\) với a là một số không đổi và a < c;
C. Cho \({F_1},{\rm{ }}{F_2}\) cố định với \({F_1}{F_2} = \) 2c (c > 0) và một độ dài 2a không đổi (a > c). Hypebol (H) là tập hợp các điểm M sao cho \(M \in \left( P \right)\)\( \Leftrightarrow M{F_1} + M{F_2} = 2a\);
D. Cả ba định nghĩa trên đều không đúng định nghĩa của Hypebol .
Dạng chính tắc của hypebol là?
A. \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\);
B. \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\);
C. \({y^2} = 2px\);
D. \(y = p{x^2}\).
Cho Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a, b > 0. Khi đó khẳng định nào sau đây đúng?
A. Nếu \({c^2} = {a^2} + {b^2}\) thì (H) có các tiêu điểm là \({F_1}\)(c; 0), \({F_2}\)(-c; 0);
B. Nếu \({c^2} = {a^2} + {b^2}\) thì (H) có các tiêu điểm là \({F_1}\)(0; c), \({F_2}\)(0; -c);
C. Nếu \({c^2} = {a^2} - {b^2}\) thì (H) có các tiêu điểm là \({F_1}\left( {c;0} \right)\), \({F_2}\left( { - c;0} \right)\);
D. Nếu \({c^2} = {a^2} - {b^2}\) thì (H) có các tiêu điểm là \({F_1}\left( {0;c} \right)\), \({F_2}\left( {0; - c} \right)\).
Cho elip \[\left( E \right):4{x^2} + 9{y^2} = 36\]. Tìm mệnh đề sai trong các mệnh đề sau:
A. (E) có trục lớn bằng 6;
B. (E) có trục nhỏ bằng 4;
C. (E) có tiêu cự bằng \[\sqrt 5 ;\]
D. (E) có tỉ số \[\frac{c}{a} = \frac{{\sqrt 5 }}{3}.\]
Cho Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a, b > 0. Khi đó khẳng định nào sau đây sai?
A. Tọa độ các đỉnh nằm trên trục thực là \({A_1}\left( {a;0} \right)\), \({A_1}\left( { - a;0} \right)\);
B. Tọa độ các đỉnh nằm trên trục ảo là \({B_1}\left( {0;b} \right)\), \({A_1}\left( {0; - b} \right)\);
C. Với \({c^2} = {a^2} + {b^2}\) (c > 0), độ dài tiêu cự là 2c.
D. Với \({c^2} = {a^2} + {b^2}\) (c > 0), độ dài trục lớn là 2b.
Định nghĩa nào sau đây là định nghĩa đường parabol?
A. Cho điểm F cố định và một đường thẳng \(\Delta \) cố định không đi qua F. Parabol (P) là tập hợp các điểm M sao cho khoảng cách từ M đến F bằng khoảng cách từ M đến \(\Delta \).
B. Cho \({F_1},{\rm{ }}{F_2}\) cố định với \({F_1}{F_2} = \) 2c, (c > 0). Parabol (P) là tập hợp điểm M sao cho \(\left| {M{F_1} - M{F_2}} \right| = 2a\) với a là một số không đổi và a < c.
C. Cho \({F_1},{\rm{ }}{F_2}\) cố định với \({F_1}{F_2} = \) 2c, (c > 0) và một độ dài 2a không đổi (a > c). Parabol (P) là tập hợp các điểm M sao cho \(M \in \left( P \right)\)\( \Leftrightarrow M{F_1} + M{F_2} = 2a\).
D. Cả ba định nghĩa trên đều không đúng định nghĩa của parabol.
Dạng chính tắc của Parabol là:
A. \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (a > b > 0);
B. \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) (a > b > 0);
C. \({y^2} = 2px\)(p > 0);
D. \(y = p{x^2}\)(p < 0).
Cho parabol (P) có phương trình chính tắc là \({y^2} = 2px\), với p > 0. Khi đó khẳng định nào sau đây sai?
A. Tọa độ tiêu điểm \(F\left( {\frac{p}{2};0} \right)\);
B. Phương trình đường chuẩn \(\Delta :x + \frac{p}{2} = 0\);
C. Trục đối xứng của parabol là trục Oy.
D. Parabol nằm về bên phải trục Oy.
Đường thẳng nào là đường chuẩn của parabol \({y^2} = \frac{3}{2}x\)
A. \(x = - \frac{3}{4};\)
B. \(x = \frac{3}{4};\)
C.\(x = \frac{3}{2};\)
D. \(x = - \frac{3}{8}.\)
Elip \(\left( E \right):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\) có tiêu cự bằng:
A. \(\sqrt 5 ;\)
B. \(5;\)
C. \(10;\)
D. \(2\sqrt 5 .\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247