A. 10
B. 5
C. 6
D. 1
A. \(d:\frac{{x + 1}}{3} = \frac{{y - 5}}{2} = \frac{{z - 2}}{1}\)
B. \(d:\frac{{x + 3}}{{ - 1}} = \frac{{y + 2}}{5} = \frac{{z + 1}}{2}\)
C. \(d:\frac{{x - 1}}{3} = \frac{{y + 5}}{2} = \frac{{z + 2}}{1}\)
D. \(d:\frac{{x - 3}}{{ - 1}} = \frac{{y - 2}}{5} = \frac{{z - 1}}{2}\)
A. \(m \ge 2\)
B. \(m \ge 0\)
C. \(m \le - \frac{1}{4}\)
D. \(m \ge \frac{1}{4}\)
A. \({\left( {x + 2} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 1} \right)^2} = 2\sqrt 6 \)
B. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 1} \right)^2} = 2\sqrt 6 \)
C. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 1} \right)^2} = 24\)
D. \({\left( {x + 2} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 1} \right)^2} = 24\)
A. 1
B. -1
C. 0
D. -5/2
A. \(\frac{2}{5}\)
B. \(\frac{1}{10}\)
C. \(\frac{1}{5}\)
D. \(\frac{1}{4}\)
A. Điểm A
B. Điểm B
C. Điểm C
D. Điểm D
A. \({V_{2016}} = V.\frac{{{{\left( {\left( {100 + a} \right)\left( {100 + n} \right)} \right)}^{10}}}}{{{{10}^{20}}}}\left( {{m^3}} \right).\)
B. \({V_{2016}} = V + V.{\left( {1 + a + n} \right)^{18}}\left( {{m^3}} \right).\)
C. \({V_{2016}} = V.\frac{{{{\left( {100 + a} \right)}^{10}}.{{\left( {100 + n} \right)}^8}}}{{{{10}^{36}}}}\left( {{m^3}} \right).\)
D. \({V_{2016}} = V.{\left( {1 + a + n} \right)^{18}}\left( {{m^3}} \right).\)
A. 4
B. 1
C. 6
D. 5
A. x = 0
B. x = 1
C. x = -1
D. x = 2
A. \(\left( \alpha \right):2y + z - 5 = 0.\)
B. \(\left( \alpha \right): - 2y + z + 3 = 0.\)
C. \(\left( \alpha \right):6x + 10y - 11z - 16 = 0.\)
D. \(\left( \alpha \right):6x + 10y - 11z - 36 = 0.\)
A. 1
B. -4
C. -1
D. 0
A. -3
B. 3
C. 2
D. 4
A. 1
B. 0
C. 2
D. 3
A. 3
B. 4
C. 0
D. 2
A. 1
B. 3
C. vô số
D. 2
A. \({x^2} + {y^2} - 4x + 6y + 9 = 0\)
B. \({x^2} + {y^2} - 4x - 6y + 9 = 0\)
C. \({x^2} + {y^2} - 4x + 6y + 11 = 0\)
D. \({x^2} + {y^2} - 4x - 6y + 11 = 0\)
A. 7
B. 16
C. 19
D. 11
A. \(250c{m^2}\)
B. \(800c{m^2}\)
C. \(\frac{{800}}{3}c{m^2}\)
D. \(\frac{{400}}{3}c{m^2}\)
A. \(\frac{{{a^3}\sqrt {33} }}{{24}}\)
B. \(\frac{{3{a^3}}}{4}\)
C. \(\frac{{{a^3}\sqrt {33} }}{8}\)
D. \(\frac{{{a^3}\sqrt {11} }}{4}\)
A. \(I = \,2{\ln ^2}x + \frac{{{x^2}}}{2}\ln x - \frac{{{x^2}}}{4} + C.\)
B. \(I = \frac{{{{\ln }^2}x}}{2} + \frac{{{x^2}}}{2}\ln x - \frac{{{x^2}}}{4} + C.\)
C. \(I = \,{\ln ^2}x + \frac{{{x^2}}}{2}\ln x - \frac{{{x^2}}}{4} + C.\)
D. \(I = \,{\ln ^2}x + \frac{{{x^2}}}{2}\ln x - \frac{{{x^2}}}{2} + C\)
A. \(I = \frac{b}{{1 - a}}\)
B. \(I = \frac{b}{{a - 1}}\)
C. \(I = \frac{b}{a}\)
D. \(I = \frac{b}{{1 + a}}\)
A. \(100.\left[ {\left( {1,01} \right)6 - 1} \right]\) triệu đồng.
B. \(101.\left[ {{{\left( {1,01} \right)}^{27}} - 1} \right]\) triệu đồng.
C. \(100.\left[ {{{\left( {1,01} \right)}^{27}} - 1} \right]\)triệu đồng.
D. \(101.\left[ {{{\left( {1,01} \right)}^{26}} - 1} \right]\) triệu đồng.
A. \( - {e^{ - x}} + x + C\)
B. \({e^{ - x}} + x + C\)
C. \({e^x} + x + C\)
D. \( - {e^x} + x + C\)
A. {1;4}
B. {1}
C. {0}
D. {0; 2}
A. 4
B. 6
C. 2
D. 8
A. \(\overrightarrow u = ( - 1; - 3;4)\)
B. \(\overrightarrow u = ( - 2; - 1;3)\)
C. \(\overrightarrow u = (1; - 2;1)\)
D. \(\overrightarrow u = (0; - 2;3)\)
A. \({S_5} = - \frac{5}{4}\)
B. \({S_5} = - \frac{3}{4}\)
C. \({S_5} = - \frac{15}{4}\)
D. \({S_5} = - \frac{9}{4}\)
A. \(S = \frac{1}{3}\)
B. \(S = \frac{2}{3}\)
C. \(S = \frac{5}{6}\)
D. \(S = \frac{1}{2}\)
A. \(\frac{{a\sqrt 3 }}{4}\)
B. \(\frac{{a\sqrt 2 }}{4}\)
C. \(\frac{{4a\sqrt 3 }}{3}\)
D. \(\frac{{a\sqrt 3 }}{3}\)
A. 1
B. -5
C. -3
D. 3
A. \(y' = \frac{{1 + {e^x}}}{{\left( {x + {e^x}} \right)\ln 2}}\)
B. \(y' = \frac{{1 + {e^x}}}{{x + {e^x}}}\)
C. \(y' = \frac{1}{{\left( {x + {e^x}} \right)\ln 2}}\)
D. \(y' = \frac{{1 + {e^x}}}{{\ln 2}}\)
A. \(A_n^k = n!k!\)
B. \(A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\)
C. \(A_n^k = \frac{{n!}}{{k!}}\)
D. \(A_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}}\)
A. \(M\left( { - 3;3;3} \right).\)
B. \(M\left( { - 3; - 3;3} \right).\)
C. \(M\left( {3; - 3;3} \right).\)
D. \(M\left( {3;3; - 3} \right).\)
A. \(r = \frac{{\sqrt {{a^2} + {b^2} + {c^2}} }}{3}\)
B. \(r = \sqrt {{a^2} + {b^2} + {c^2}} \)
C. \(r = \frac{1}{2}\sqrt {{a^2} + {b^2} + {c^2}} \)
D. \(r = \frac{1}{2}(a + b + c)\)
A. \(\frac{{\sqrt 3 }}{2}.\)
B. 1/2
C. \(\frac{{\sqrt {15} }}{5}.\)
D. \(\frac{{\sqrt {3} }}{5}.\)
A. P = 5
B. P = -5
C. P = -7
D. P = 7
A. (-2; 0)
B. \(\left( { - \infty ; - 2} \right)\)
C. (-2; 1)
D. (0; 4)
A. S = 17
B. S = -17
C. S = 5
D. S = 7
A. \(\left( {3; + \infty } \right).\)
B. \(\left( { - \infty ;2} \right) \cup \left( {3; + \infty } \right).\)
C. \(\left( { - \infty ;2} \right).\)
D. (2; 3)
A. \(5\pi \)
B. \(8\pi \)
C. \(\frac{{25}}{6}\pi \)
D. \(\frac{{13}}{3}\pi \)
A. \(2\pi {a^3}\)
B. \(4\pi {a^3}\)
C. \(12\pi {a^3}\)
D. \(\pi {a^3}\)
A. (-1; 2; 0)
B. (-2;4; 0)
C. (-2; 1; 1)
D. (-4; 2; 2)
A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{1}{2}\)
B. \(\frac{{{V_1}}}{{{V_2}}} = 1\)
C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{2}{3}\)
D. \(\frac{{{V_1}}}{{{V_2}}} = 2\)
A. (2; 4)
B. (-4; -2)
C. (-2; 0)
D. (0; 2)
A. \({S_{tp}} = 2\pi R(l + R).\)
B. \({S_{tp}} = \pi R(2l + R).\)
C. \({S_{tp}} = \pi R(l + R).\)
D. \({S_{tp}} = \pi R(l + 2R).\)
A. 1
B. 2
C. 3
D. 0
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247