A. \(\left( {1;2} \right),\left( {\sqrt 2 ;\sqrt 2 } \right)\)
B. \(\left( {2;1} \right),\left( {\sqrt 3 ;\sqrt 3 } \right)\)
C. \(\left( {\frac{2}{3};3} \right),\left( {\sqrt 3 ;\frac{2}{{\sqrt 3 }}} \right)\)
D. \(\left( {\frac{1}{2};1} \right),\left( {\frac{{\sqrt 2 }}{3};\sqrt 3 } \right)\)
A
\(\begin{array}{l}
\left\{ {\begin{array}{*{20}{l}}
{2{x^2} + {y^2} + 3xy = 12}\\
{2{{(x + y)}^2} - {y^2} = 14}
\end{array}} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
2{x^2} + {y^2} + 3xy = 12\\
2{x^2} + 4xy + 2{y^2} - {y^2} = 14
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
xy = 2\\
2{x^2} + {y^2} + 3xy = 12
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{2}{x}\\
2{x^2} + \frac{4}{{{x^2}}} + 6 = 12
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{2}{x}\\
2{x^4} - 6{x^2} + 4 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{2}{x}\\
{x^2} = 1 \vee {x^2} = 2
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = \pm 2,y = \pm \sqrt 2 \\
x = \pm 1,x = \pm \sqrt 2
\end{array} \right.
\end{array}\)
Đáp án A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247