Cho biểu thức \(P = 3{\sin ^2}x + 2\sin x.\cos x - {\cos ^2}x{\rm{ }}\left( {x \ne \frac{\pi }{2} + k\pi ,k \in Z} \right)\), nếu đặt \(t = \frac{{\sin x}}{{\cos x}}\) thì biểu t...

Câu hỏi :

Cho biểu thức \(P = 3{\sin ^2}x + 2\sin x.\cos x - {\cos ^2}x{\rm{   }}\left( {x \ne \frac{\pi }{2} + k\pi ,k \in Z} \right)\), nếu đặt \(t = \frac{{\sin x}}{{\cos x}}\) thì biểu thức \(P\) được viết theo \(t\) là biểu thức nào dưới đây ? 

A. \(P = 3{t^2} + 2t.\)             

B. \(P = 3{t^2} + 2t - 1.\) 

C. \(P = \frac{{3{t^2} + 2t - 1}}{{{t^2} + 1}}.\)      

D. \(P = \left( {3{t^2} + 2t - 1} \right)\left( {{t^2} + 1} \right).\) 

* Đáp án

C

* Hướng dẫn giải

Ta có: \(t = \frac{{\sin x}}{{\cos x}} = \tan x \Rightarrow \frac{1}{{{{\cos }^2}x}} = 1 + {\tan ^2}x = 1 + {t^2} \Rightarrow {\cos ^2}x = \frac{1}{{1 + {t^2}}}\)

Với \(x \ne \frac{\pi }{2} + k\pi  \Rightarrow \cos x \ne 0 \Rightarrow {\cos ^2}x \ne 0\). Chia cả 2 vế của biểu thức cho \({\cos ^2}x \ne 0\) ta được:

\(\frac{P}{{{{\cos }^2}x}} = 3.\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + 2.\frac{{\sin x}}{{\cos x}} - 1 \Leftrightarrow \left( {1 + {t^2}} \right)P = 3{t^2} + 2t - 1 \Leftrightarrow P = \frac{{3{t^2} + 2t - 1}}{{1 + {t^2}}}\)

Chọn C.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 10 năm 2021-2022 Trường THPT Cao Bá Quát

Số câu hỏi: 39

Copyright © 2021 HOCTAP247