Tìm tất cả các giá trị của tham số \(m\) để bất phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + 2m + 5 > 0\) nghiệm đúng \(\forall x \in R\).

Câu hỏi :

Tìm tất cả các giá trị của tham số \(m\) để bất phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + 2m + 5 > 0\) nghiệm đúng \(\forall x \in R\).   

A. \(m > 1\) 

B. \(m <  - 3\) 

C. \( - 3 < m < 2\) 

D. \(m > 2\) 

* Đáp án

D

* Hướng dẫn giải

Để bất phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + 2m + 5 > 0\) nghiệm đúng \(\forall x \in R\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta ' < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m - 1 > 0\\{\left( {m + 1} \right)^2} - \left( {m - 1} \right)\left( {2m + 5} \right) < 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m > 1\\ - {m^2} - m + 6 < 0\,\,\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\\left[ \begin{array}{l}m <  - 3\\m > 2\end{array} \right.\end{array} \right. \Leftrightarrow m > 2\,.\end{array}\)

Vậy  \(m > 2\) thỏa mãn bài toán.

Chọn D.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 10 năm 2021-2022 Trường THPT Cao Bá Quát

Số câu hỏi: 39

Copyright © 2021 HOCTAP247