Tìm các giá trị m để bất phương trình:\(\left( {2m + 1} \right){x^2} - 3\left( {m + 1} \right)x + m + 1 > 0\) vô nghiệm.

Câu hỏi :

Tìm các giá trị m để bất phương trình:\(\left( {2m + 1} \right){x^2} - 3\left( {m + 1} \right)x + m + 1 > 0\) vô nghiệm. 

A. \( - 5 \le m \le  - \frac{1}{2}\)      

B. \( - 5 \le m \le  - 1\) 

C. \(m \ge  - 1 \vee m \le  - 5.\)              

D. \(1 \le m \le 5\) 

* Đáp án

B

* Hướng dẫn giải

Bất phương trình:\(\left( {2m + 1} \right){x^2} - 3\left( {m + 1} \right)x + m + 1 > 0\) vô nghiệm

\( \Leftrightarrow \left( {2m + 1} \right){x^2} - 3\left( {m + 1} \right)x + m + 1 \le 0\) có nghiệm với mọi \(m\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}2m + 1 < 0\\\Delta  = 9{\left( {m + 1} \right)^2} - 4\left( {2m + 1} \right)\left( {m + 1} \right) \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m <  - \frac{1}{2}\\9{m^2} + 18m + 9 - 8{m^2} - 12m - 4 \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m <  - \frac{1}{2}\\{m^2} + 6m + 5 \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m <  - \frac{1}{2}\\\left( {m + 1} \right)\left( {m + 5} \right) \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m <  - \frac{1}{2}\\ - 5 \le m \le  - 1\end{array} \right. \Leftrightarrow  - 5 \le m \le  - 1.\end{array}\)

Chọn B.

Copyright © 2021 HOCTAP247