A. \( - 5 \le m \le - \frac{1}{2}\)
B. \( - 5 \le m \le - 1\)
C. \(m \ge - 1 \vee m \le - 5.\)
D. \(1 \le m \le 5\)
B
Bất phương trình:\(\left( {2m + 1} \right){x^2} - 3\left( {m + 1} \right)x + m + 1 > 0\) vô nghiệm
\( \Leftrightarrow \left( {2m + 1} \right){x^2} - 3\left( {m + 1} \right)x + m + 1 \le 0\) có nghiệm với mọi \(m\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}2m + 1 < 0\\\Delta = 9{\left( {m + 1} \right)^2} - 4\left( {2m + 1} \right)\left( {m + 1} \right) \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m < - \frac{1}{2}\\9{m^2} + 18m + 9 - 8{m^2} - 12m - 4 \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < - \frac{1}{2}\\{m^2} + 6m + 5 \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m < - \frac{1}{2}\\\left( {m + 1} \right)\left( {m + 5} \right) \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < - \frac{1}{2}\\ - 5 \le m \le - 1\end{array} \right. \Leftrightarrow - 5 \le m \le - 1.\end{array}\)
Chọn B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247