Bạn A đứng ở đỉnh của tòa nhà và quan sát chiếc diều, nhận thấy góc nâng (góc nghiêng giữa phương từ mắt của bạn A

Câu hỏi :

Bạn A đứng ở đỉnh của tòa nhà và quan sát chiếc diều, nhận thấy góc nâng (góc nghiêng giữa phương từ mắt của bạn A tới chiếc diều và phương nằm ngang) là α = 35°; khoảng cách từ đỉnh tòa nhà tới mắt bạn A là 1,5 m. Cùng lúc đó ở dưới chân tòa nhà, bạn B cũng quan sát chiếc diều và thấy góc nâng là β = 75°; khoảng cách từ mặt đất đến mắt bạn B cũng là 1,5 m. Biết chiều cao của tòa nhà là h = 20 m (Hình 17). Chiếc diều bay cao bao nhiêu mét so với mặt đất (làm tròn kết quả đến hàng đơn vị)?

Bạn A đứng ở đỉnh của tòa nhà và quan sát chiếc diều, nhận thấy góc nâng (góc nghiêng giữa phương từ mắt của bạn A (ảnh 1)

* Đáp án

* Hướng dẫn giải

Ta đặt tên các điểm như trên hình vẽ dưới:

Bạn A đứng ở đỉnh của tòa nhà và quan sát chiếc diều, nhận thấy góc nâng (góc nghiêng giữa phương từ mắt của bạn A (ảnh 2)

Ta có: AI là khoảng cách từ đỉnh của tòa nhà tới mắt bạn A nên AI = 1,5 m.

BE là khoảng cách từ mặt đất tới mắt của bạn B nên BE = 1,5 m.

Lại có: h = IB + BE IB = h – BE = 20 – 1,5 = 18,5 (m).

Và AB = AI + IB = 1,5 + 18,5 = 20 (m).

Ta có: CAB^=α+90°=35°+90°=125°ABC^=90°β=90°75°=15°

Tam giác ABC có ABC^+CAB^+ACB^=180° (định lí tổng ba góc trong tam giác)

Suy ra ACB^=180°ABC^+CAB^=180°15°+125°=40°

Áp dụng định lí sin trong tam giác ABC ta có: ABsinACB^=BCsinCAB^

Do đó: BC=AB.sinCAB^sinACB^=20.sin125°sin40°25,5.

Tam giác CBH vuông tại H nên sinCBH^=CHBC

CH = BC . sin β = 25,5 . sin 75° ≈ 24,6.

Lại có HK = BE = 1,5 m.

Do đó CK = CH + HK = 24,6 + 1,5 = 26,1 (m).

Vậy chiếc diều bay cao 26,1 m so với mặt đất.

Copyright © 2021 HOCTAP247