Cho tam giác ABC vuông tại A có góc B = 60 độ. Trên cạnh BC lấy điểm M sao cho

Câu hỏi :

Cho tam giác ABC vuông tại A có B^=60°. Trên cạnh BC lấy điểm M sao cho CAM^=30°. Chứng minh rằng:

a) Tam giác CAM cân tại M;

b) Tam giác BAM là tam giác đều;

c) M là trung điểm của đoạn thẳng BC.

* Đáp án

* Hướng dẫn giải

Cho tam giác ABC vuông tại A có góc B = 60 độ. Trên cạnh BC lấy điểm M sao cho (ảnh 1)

a) Xét tam giác ABC vuông tại A có ABC^+ACB^=90° (trong tam giác vuông, hai góc nhọn phụ nhau).

Do đó ACB^=90°ABC^=90°60°=30°.

ACM^=ACB^ nên ACM^=30°.

Tam giác CAM có ACM^=CAM^=30° nên tam giác CAM cân tại M.

Vậy tam giác CAM cân tại M.

b) Có BAC^=BAM^+MAC^.

 Do đó BAM^=BAC^MAC^=90°30°=60°.

ABM^=ABC^ nên ABM^=60°.

Xét tam giác BAM có ABM^+BAM^+BMA^=180°.

Do đó BMA^=180°ABM^BAM^=180°60°60°=60°.

Tam giác BAM có ABM^=BAM^=BMA^=60° nên tam giác BAM là tam giác đều.

Vậy tam giác BAM là tam giác đều.

c) Do tam giác CAM cân tại M nên MA = MC (1).

Do tam giác BAM là tam giác đều MA = MB (2).

Từ (1) và (2) ta có MB = MC.

Mà M nằm giữa B và C nên M là trung điểm của BC.

Vậy M là trung điểm của BC.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập cuối chương IV có đáp án !!

Số câu hỏi: 38

Copyright © 2021 HOCTAP247