Cho đường thẳng d: x + y = 150 trên mặt phẳng tọa độ Oxy. Đường thẳng này cắt

Câu hỏi :

Cho đường thẳng d: x + y = 150 trên mặt phẳng tọa độ Oxy. Đường thẳng này cắt hai trục tọa độ Ox và Oy tại hai điểm A và B.

a) Xác định các miền nghiệm D1, D2, D3 của các bất phương trình tương ứng x ≥ 0, y ≥ 0 và x + y ≤ 150.

b) Miền tam giác OAB (H.2.5) có phải là giao của các miền nghiệm D1, D2, D3 hay không?

Cho đường thẳng d: x + y = 150 trên mặt phẳng tọa độ Oxy. Đường thẳng này cắt (ảnh 1)

c) Lấy một điểm trong tam giác OAB (chẳng hạn điểm (1;2)) hoặc một điểm trên cạnh nào đó của tam giác OAB (chẳng hạn điểm (1;149)) và kiểm tra xem tọa độ của các điểm đó có phải là nghiệm của hệ bất phương trình sau hay không: x0y0x+y150

* Đáp án

* Hướng dẫn giải

a) Xác định miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0).

Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0;1).

Miền nghiệm D3 của bất phương trình x + y ≤ 150 và gạch bỏ miền còn lại

- Vẽ đường thẳng d: x + y – 150 = 0.

- Vì 0 + 0 = 0 < 150 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + y ≤ 150

Do đó miền nghiệm D3 của bất phương trình x + y ≤ 150 là nửa mặt phẳng bờ d chứa gốc tọa độ.

b) Giao điểm của ba miền nghiệm D1, D2, D3 là miền tam giác OAB với O(0;0), A(150;0) và B(0;150)

Cho đường thẳng d: x + y = 150 trên mặt phẳng tọa độ Oxy. Đường thẳng này cắt (ảnh 2)

Do đó miền tam giác OAB (H.2.5) có là giao của các miền nghiệm D1, D2, D3.

c) Điểm (1;2) nằm trong tam giác OAB thỏa mãn x = 1 > 0, y = 2 > 0 và 1 + 2 = 3 < 150 nên cặp sô (x; y) = (1;2) thỏa mãn cả ba bất phương trình của hệ bất phương trình đã cho. Do đó nó là một nghiệm của hệ bất phương trình đã cho.

Điểm (1;149) nằm trong tam giác OAB thỏa mãn x = 1 > 0, y = 149 > 0 và 1 + 149 = 150

≤ 150 nên cặp sô (x; y) = (1;149) thỏa mãn cả ba bất phương trình của hệ bất phương trình đã cho. Do đó nó là một nghiệm của hệ bất phương trình đã cho.

Copyright © 2021 HOCTAP247