Cho tam giác ABC. Chứng minh rằng: a) Nếu góc A nhọn thì

Câu hỏi :

Cho tam giác ABC. Chứng minh rằng:

a) Nếu góc A nhọn thì b2 + c2 > a2;

b) Nếu góc A tù thì b2 + c2 < a2;

c) Nếu góc A vuông thì b2 + c2 = a2.

* Đáp án

* Hướng dẫn giải

Xét ΔABC, có:

Theo định lí cos, ta có: a2 = b2 + c2 – 2bc.cosA

a) Nếu góc A nhọn thì cosA > 0 2bccosA > 0 - 2bccosA < 0

Do đó: a2 = b2 + c2 – 2bc.cosA < b2 + c2

Vậy b2 + c2 > a2

b) Nếu góc A tù thì cosA > 0 2bccosA < 0 - 2bccosA > 0

Do đó: a2 = b2 + c2 – 2bc.cosA > b2 + c2

Vậy b2 + c2 < a2.

c) Nếu góc A vuông thì cosA = 0 2bccosA = 0

Do đó: a2 = b2 + c2 – 2bc.cosA = b2 + c2

Vậy b2 + c2 = a2.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập cuối chương III có đáp án !!

Số câu hỏi: 29

Copyright © 2021 HOCTAP247