Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-4;1), B(2;4), C(2;-2).

Câu hỏi :

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-4;1), B(2;4), C(2;-2).

a) Giải tam giác ABC.

b) Tìm tọa độ trực tâm H của tam giác ABC.

* Đáp án

* Hướng dẫn giải

a) Ta có: AB6;3AB=62+32=35;

AC6;3AC=62+32=35;

BC0;6BC=02+62=6;

Theo định lí cosin, ta có:

cosA=AB2+AC2BC22.AB.AC=35A^53,130;

Tam giác ABC có AB = AC nên tam giác ABC cân tại A

B^=C^=1800A^263,440.

Vậy AB=AC=35,BC=6,A^=53,130,B^=C^=63,440.

b) Gọi trực tâm H của tam giác ABC có tọa độ là H(x;y)

Khi đó, ta có: AHx+4;y1;BC0;6;BHx2;y4;AC6;3

Vì AHBCAH.BC=0x+4.0+y1.6=0y=1.

Vì BHACBH.AC=0x2.6+y4.3=0

x2.2+y4.1=02xy=0

Mà y = 1 2x1=0x=12.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Tích vô hướng của hai vectơ có đáp án !!

Số câu hỏi: 45

Copyright © 2021 HOCTAP247