Trong mặt phẳng tọa độ Oxy, cho A(2;1), B(-2;5) và C(-5;2).

Câu hỏi :

Trong mặt phẳng tọa độ Oxy, cho A(2;1), B(-2;5) và C(-5;2).

a) Tìm tọa độ của các vecto BA và BC.

b) Chứng minh rằng A, B, C là ba đỉnh của một tam giác vuông. Tính diện tích và chu vi của tam giác đó.

c) Tìm tọa độ trọng tâm G của tam giác ABC.

d) Tìm tọa độ của điểm D sao cho tứ giác BCAD là một hình bình hành.

* Đáp án

* Hướng dẫn giải

a) Ta có: BA4;4 và BC3;3.

b) Ta có: BA.BC=4.3+4.3=12+12=0

BABC

ΔABC vuông tại B.

Diện tích tam giác vuông ABC là:

SΔABC=12.AB.BC=12.42+42.32+32=12.42.32=12 (đvdt)

c) Tọa độ trọng tâm G của tam giác ABC là:

xG=2+2+53=53yG=1+5+23=83G53;83

Vậy tọa độ trọng tâm của tam giác ABC là: G53;83.

d) Để tứ giác BCAD là hình bình hành khi DA=BC

Ta có: DA2x;1y và BC3;3

Khi đó, ta có hệ phương trình: 2x=31y=3x=5y=4D5;4.

Vậy với D(5;4) thì tứ giác BCAD là một hình bình hành.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập cuối chương IV có đáp án !!

Số câu hỏi: 38

Copyright © 2021 HOCTAP247