Cho các mệnh đề sau:
P: “Giá trị tuyệt đối của mọi số thực đều lớn hơn hoặc bằng chính nó”;
Q: “Có số tự nhiên sao cho bình phương của nó bằng 10”;
R: “Có số thực x sao cho x2 + 2x – 1 = 0”.
a) Xét tính đúng sai của mỗi mệnh đề trên.
b) Sử dụng kí hiệu ∀, ∃ để viết lại các mệnh đề đã cho.
a)
+) Xét mệnh đề P: “Giá trị tuyệt đối của mọi số thực đều lớn hơn hoặc bằng chính nó”:
Lấy số thực x bất kì, ta có:
Nếu x ≥ 0 thì |x| = x;
Nếu x < 0 thì |x| = - x. Do đó |x| > x.
Suy ra với mọi x thì |x| ≥ x.
Vậy mệnh đề P đúng.
+) Xét mệnh đề Q: “Có số tự nhiên sao cho bình phương của nó bằng 10”:
Giả sử n là số tự nhiên thỏa mãn n2 = 10.
Xét n2 = 10
Tuy nhiên .
Do đó không tồn tại số tự nhiên n thỏa mãn yêu cầu đề bài.
Vậy mệnh đề Q sai.
+) Xét mệnh đề R: “Có số thực x sao cho x2 + 2x – 1 = 0”.
Xét phương trình x2 + 2x – 1 = 0, có:
∆’ = 12 – 1.(-1) = 2 > 0
Khi đó phương trình có hai nghiệm .
Hai nghiệm này đều là các số thực.
Do đó tồn tại các số thực thỏa mãn x2 + 2x – 1 = 0.
Vậy mệnh đề R đúng.
b) Bằng cách sử dụng kí hiệu, các mệnh đề được phát biểu như sau:
P: “”.
Q: “n2 = 10”
R: “, x2 + 2x – 1 = 0”.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247