Tại vòng chung kết của một trò chơi truyền hình, có 100 khán giải tại trường quay có quyền bình chọn cho hai thí sinh

Câu hỏi :

Tại vòng chung kết của một trò chơi truyền hình, có 100 khán giải tại trường quay có quyền bình chọn cho hai thí sinh A và B. Biết rẳng có 85 khán giả bình chọn cho thí sinh A, 72 khán giả bình chọn cho thí sinh B và 60 khán giả bình chọn cho cả hai thí sinh này. Có bao nhiêu khán giá đã tham gia bình chọn? Có bao nhiêu khán giả không tham gia bình chọn?

* Đáp án

* Hướng dẫn giải

Gọi E, F lần lượt là tập hợp số người bình chọn cho thí sinh A và số người bình chọn cho thí sinh B.

Theo giả thiết, ta có: n(E) = 85, n(F) = 72, n(EF) = 60.

Nhận thấy rằng, nếu tính tổng n(E) + n(F) thì ta được số người bình chọn cho A hoặc B, nhưng số người bình chọn cho cả A và B được tính hai lần. Do đó số người bình chọn cho ít nhất một trong hai thí sinh A và B.

n(EF) = n(E) + n(F) - n(EF) = 85 + 72 – 60 = 97.

Suy ra có 97 người tham gia bình chọn và có 100 – 97 = 3 người không tham gia bình chọn.

Vậy có 97 người tham gia bình chọn và 3 người không tham gia bình chọn.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Các phép toán trên tập hợp có đáp án !!

Số câu hỏi: 14

Copyright © 2021 HOCTAP247