Cho tam giác ABC có AB = 6, AC = 8 và . a) Tính diện tích tam giác ABC. b) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC

Câu hỏi :

Cho tam giác ABC có AB = 6, AC = 8 và A^=60o .

a) Tính diện tích tam giác ABC.

b) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích tam giác IBC.

* Đáp án

* Hướng dẫn giải

a) Áp dụng công thức tính diện tích tam giác ta có:

S=12.AC.AB.sinA=12.6.8.sin60o=12.6.8.32=12320,8

 

Vậy diện tích tam giác ABC là 20,8 (đơn vị diện tích).

b) Áp dụng định lí côsin cho tam giác ABC ta có:

BC2 = AB2 + AC2  – 2.AB.AC.cosA = 62 + 82   2.6.8.cos60° = 52

BC = 52 ≈ 7,2.

Mặt khác diện tích tam giác ABC:      

S=AB.AC.BC4RR=AB.AC.BC4S=6.8.524.1234,2

Media VietJack

Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên ta có IA = IB = IC = R = 4,2.

Nửa chu vi của tam giác IBC: 

p=IB+IC+BC2=4,2+4,2+7,22=7,8

Áp dụng công thức Heron ta tính được diện tích tam giác IBC:

S=7,8.(7,84,2).(7,84,2).(7,87,2)60,77,8

Vậy diện tích tam giác IBC là 7,8 (đơn vị diện tích).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Định lí côsin và định lí sin có đáp án !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247