Cho tứ giác lồi ABCD có các đường chéo AC = x, BD = y và góc giữa AC và BD bằng α. Gọi S là diện tích của tứ giác ABCD.

Câu hỏi :

Cho tứ giác lồi ABCD có các đường chéo AC = x, BD = y và góc giữa AC và BD bằng α. Gọi S là diện tích của tứ giác ABCD.

a) Chứng minh S=12xysinα  .

b) Nêu kết quả trong trường hợp AC BD.

* Đáp án

* Hướng dẫn giải

Media VietJack

a) Ta có SABCD = SABD + SCBD.

Vẽ AH và CK vuông góc với BD tại H và K.

Gọi I là giao điểm của hai đường chéo AC và BD.

Ta có : AH = AI.sinα ; CK = CI.sinα.

SABCD=12AH.BD+12CK.BD=12BD.(AH+CK)=12BD.(AI+IC)sinα=12BD.ACsinα

 SABCD=12x.ysinα

b) Nếu AC BD thì sinα = sin90° = 1, khi đó SABCD=12x.y

Như vậy nếu tứ giác lồi có hai đường chéo vuông góc với nhau thì diện tích của tứ giác đó bằng một nửa tích độ dài của hai đường chéo.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Định lí côsin và định lí sin có đáp án !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247