Chứng minh rằng với mọi số tự nhiên n, ta có 102n + 1 + 1 chia hết cho 11.

Câu hỏi :

Chứng minh rằng với mọi số tự nhiên n, ta có 102n + 1 + 1 chia hết cho 11.

* Đáp án

* Hướng dẫn giải

Ta chứng minh bằng quy nạp theo n.

Bước 1. Với n = 0 ta có 102.0 + 1 + 1 = 11 ⁝ 11.                                         

Như vậy khẳng định đúng cho trường hợp n = 0.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: 102k + 1 + 1 chia hết cho 11.

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: 102(k + 1) + 1 + 1 chia hết cho 11.

Thật vậy, ta có:

102(k + 1) + 1 + 1

= 10(2k + 1) + 2 + 1

= 100.102k + 1 + 1

= 100.102k + 1 + 100 – 100 + 1

= 100(102k + 1 + 1) – 100 + 1

= 100(102k + 1 + 1) – 99.

Vì 102k + 1 + 1 và 99 đều chia hết cho 11 nên 100(102k + 1 + 1) – 99 chia hết cho 11. Do đó 102(k + 1) + 1 + 1 chia hết cho 11.

Vậy khẳng định đúng với mọi số tự nhiên n.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Cuối chuyên đề 2 có đáp án !!

Số câu hỏi: 20

Copyright © 2021 HOCTAP247