Chứng minh rằng đồ thị của hàm số y = ax2 + bx + c (a ≠ 0) là một parabol có tiêu điểm là và đường chuẩn là , trong đó Δ = b2 – 4ac.
+) Mỗi điểm M thuộc đồ thị của hàm số y = ax2 + bx + c đều có toạ độ (x; ax2 + bx + c).
Ta cần chứng minh M cũng thuộc parabol đã cho, tức là hay MF = d(M, Δ). Thật vậy:
MF = d(M, Δ)
Đẳng thức cuối đúng, do đó ta có điều phải chứng minh.
+) Ngược lại, với mỗi điểm M(x; y) thuộc parabol đã cho, ta phải chứng minh M thuộc đồ thị hàm số y = ax2 + bx + c. Thật vậy:
Vì M(x; y) thuộc parabol đã cho nên hay MF = d(M, Δ)
Vậy M(x; y) thuộc đồ thị hàm số y = ax2 + bx + c.
Chứng minh được hoàn tất.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247