Cho hai parabol có phương trình y2 = 2px và y = ax2 + bx + c (a ≠ 0). Chứng minh rằng nếu hai parabol

Câu hỏi :

Cho hai parabol có phương trình y2 = 2px và y = ax2 + bx + c (a ≠ 0). Chứng minh rằng nếu hai parabol đó cắt nhau tại bốn điểm phân biệt thì bốn điểm đó cùng nằm trên đường tròn (C):x2+y2+ba2px1ay+ca=0.

* Đáp án

* Hướng dẫn giải

+) Xét trường hợp a > 0.

Media VietJack

Để hai parabol cắt nhau tại 4 điểm phân biệt thì đỉnh của parabol y = ax2 + bx + c phải nằm ở góc phần tư thứ IV (như hình vẽ).

Khi đó ta suy ra b < 0 và phương trình ax2 + bx + c có hai nghiệm phân biệt

b24ac>0.

Xét phương trình đường tròn (C):x2+y2+ba2px1ay+ca=0.

có ba2p22+1a22ca=b2ap2+12a2ca

=b24a2ba.p+p2+14a2ca=b24a2caba.p+p2+14a2=b24ac4a2ba.p+p2+14a2

Vì b < 0 và b24ac>0 (chứng minh trên) nên ba.p> 0 và b24ac4a2>0

Do đó ba2p22+1a22ca>0.

Vậy (C) đúng là phương trình một đường tròn.

+) Trường hợp a < 0: Chứng minh tương tự ta được (C) đúng là phương trình một đưởng tròn.

+) Giờ ta chứng minh bốn giao điểm của hai parabol nằm trên đường tròn này. Thật vậy:

Nếu điểm M(x; y) là giao điểm của hai parabol trên thì ta có:

y2 = 2px và y = ax2 + bx + c  y2 – 2px = 0 và ax2 + bx + c – y = 0

 y2 – 2px = 0 và x2+bax+caya=0

x2+bax+caya+y22px=0

x2+y2+bax2pxya+ca=0

x2+y2+ba2px1ay+ca=0.

Do đó M thuộc đường tròn (C). Vậy bốn giao điểm của parabol đều nằm trên (C).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Cuối chuyên đề 3 có đáp án !!

Số câu hỏi: 14

Copyright © 2021 HOCTAP247