Cho elip có phương trình . Viết phương trình đường thẳng đi qua điểm M(2; 1) và cắt elip tại hai điểm A, B sao cho MA = MB.

Câu hỏi :

Cho elip có phương trình x225+y216=1. Viết phương trình đường thẳng đi qua điểm M(2; 1) và cắt elip tại hai điểm A, B sao cho MA = MB.

* Đáp án

* Hướng dẫn giải

Giả sử A(x1; y1), B(x2; y2).

Ta thấy M nằm trong elip, do đó MA = MB khi M là trung điểm của AB.

x1+x2=2xM=2.2=4,  y1+y2=2yM=2.1=2.

Vì A, B thuộc elip nên x1225+y1216=1 và x2225+y2216=1.

x1225+y1216x2225+y2216=11=0

x12x2225+y12y2216=0x1+x2x1x225+y1+y2y1y216=0

4x1x225+2y1y216=0x1x225+y1y232=0x1x225=y1y232.

BA có toạ độ là (x1 – x2; y1 – y2) nên (25; –32) là một vectơ chỉ phương của AB

 (32; 25) là một vectơ pháp tuyến của AB

Phương trình đường thẳng AB là: 32(x – 2) + 25(y – 1) = 0 hay 32x + 25y – 89 = 0.

Vậy phương trình đường thẳng cần tìm là 32x + 25y – 89 = 0.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Cuối chuyên đề 3 có đáp án !!

Số câu hỏi: 14

Copyright © 2021 HOCTAP247