Giải hệ phương trình bậc nhất ba ẩn bằng phương pháp Gauss. Cho hệ phương trình

Câu hỏi :

Giải hệ phương trình bậc nhất ba ẩn bằng phương pháp Gauss. Cho hệ phương trình:

x+y2z=3x+y+6z=132x+y9z=5.

a) Khử ẩn x của phương trình thứ hai bằng cách cộng phương trình này với phương trình thứ nhất. Viết phương trình nhận được (phương trình này không còn chứa ẩn x và là phương trình thứ hai của hệ mới, tương đương với hệ ban đầu).

b) Khử ẩn x của phương trình thứ ba bằng cách nhân phương trình thứ nhất với –2 và cộng với phương trình thứ ba. Viết phương trình thứ ba mới nhận được. Từ đó viết hệ mới nhận được sau hai bước trên (đã khử x ở hai phương trình cuối).

c) Làm tương tự đối với hệ mới nhận được ở câu b), từ phương trình thứ hai và thứ ba khử ẩn y ở phương trình thứ ba. Viết hệ dạng tam giác nhận được.

d) Giải hệ dạng tam giác nhận được ở câu c). Từ đó suy ra nghiệm của hệ đã cho.

* Đáp án

* Hướng dẫn giải

a) Cộng phương trình thứ hai với phương trình thứ nhất, ta được:

(x + y – 2z) + (–x + y + 6z) = 3 = 13  2y + 4z = 16  y + 2z = 8.

b) Nhân phương trình thứ nhất với –2 và cộng với phương trình thứ ba, ta được:

–2(x + y – 2z) + (2x + y – 9z) = –2 . 3 + (–5)  –y – 5z = –11  y + 5z = 11.

Hệ mới nhận được sau hai bước trên là: x+y2z=3y+2z=8y+5z=11.

c) Lấy phương trình thứ hai trừ phương trình thứ ba, ta được:

(y + 2z) – (y + 5z) = 8 – 11  –3z = –3  z = 1.

Hệ tam giác nhận được là: x+y2z=3y+2z=8z=1.

d) x+y2z=3y+2z=8z=1x+y2z=3y+2.1=8z=1x+y2z=3y=6z=1

x+62.1=3y=6z=1x=1y=6z=1.

Vậy nghiệm của hệ đã cho là (x; y; z) = (–1; 6; 1).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Hệ phương trình bậc nhất ba ẩn có đáp án !!

Số câu hỏi: 29

Copyright © 2021 HOCTAP247