Chứng minh rằng n3 – n + 3 chia hết cho 3 với mọi số tự nhiên n ≥ 1.
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 13 – 1 + 3 = 3 ⁝ 3.
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: k3 – k + 3 ⁝ 3
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: (k + 1)3 – (k + 1) + 3 ⁝ 3
Thật vậy, sử dụng giả thiết quy nạp ta có:
(k + 1)3 – (k + 1) + 3
= (k3 + 3k2 + 3k + 1) – (k + 1) + 3
= (k3 – k + 3) + (3k2 + 3k)
Vì (k3 – k + 3) và (3k2 + 3k) đều chia hết cho 3 nên (k3 – k + 3) + (3k2 + 3k) ⁝ 3 hay (k + 1)3 – (k + 1) + 3 ⁝ 3.
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247