Chứng minh rằng n2 – n + 41 là số lẻ với mọi số nguyên dương n.

Câu hỏi :

Chứng minh rằng n2 – n + 41 là số lẻ với mọi số nguyên dương n.

* Đáp án

* Hướng dẫn giải

Ta chứng minh bằng quy nạp theo n.

Bước 1. Với n = 1 ta có 12 – 1 + 41 = 41 là số lẻ.                                    

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: k2 – k + 41 là số lẻ.

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: (k + 1)2 – (k + 1) + 41 là số lẻ.

Thật vậy, sử dụng giả thiết quy nạp ta có:

(k + 1)2 – (k + 1) + 41

= (k2 + 2k + 1) – (k + 1) + 41

= k2 + k + 41 = (k2 – k + 41) + 2k

Vì k2 – k + 41 là số lẻ và 2k là số chẵn nên (k2 – k + 41) + 2k là số lẻ hay (k + 1)2 – (k + 1) + 41 là số lẻ.

Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Phương pháp quy nạp toán học có đáp án !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247