Cho tổng Sn = a) Tính S1, S2, S3. b) Dự đoán công thức tính tồng Sn và chứng minh bằng quy nạp.

Câu hỏi :

Cho tổng Sn 11.2+12.3+...+1nn+1.

a) Tính S1, S2, S3.

b) Dự đoán công thức tính tồng Sn và chứng minh bằng quy nạp.

* Đáp án

* Hướng dẫn giải

a) S1 = 111+1=12, S2 = 11.2+12.3=23, S3 = 11.2+12.3+13.4=34.

b) Từ câu a) ta dự đoán Sn = nn+1.

Ta chứng minh bằng quy nạp theo n.

Bước 1. Với n = 1 ta có S1 = 12=11+1. 

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: Sk = kk+1.

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: Sk + 1 = k+1k+1+1.

Thật vậy, sử dụng giả thiết quy nạp ta có:

Sk + 1 = 11.2+12.3+...+1kk+1+1k+1k+1+1

= Sk + 1k+1k+1+1

=kk+1+1k+1k+1+1
=kk+1+1k+1k+2=kk+2+1k+1k+2
=k2+2k+1k+1k+2=k+12k+1k+2=k+1k+2=k+1k+1+1.

Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Phương pháp quy nạp toán học có đáp án !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247