Sừ dụng phương pháp quy nạp toán học, chứng minh rằng số đường chéo của một đa giác n cạnh (n ≥ 4) là
Ta chứng minh bằng quy nạp theo n với n ≥ 4.
Bước 1. Với n = 4 ta có đa giác là tứ giác.
Số đường chéo của tứ giác là 2 = .
Như vậy khẳng định đúng cho trường hợp n = 4.
Bước 2. Giả sử khẳng định đúng với n = k (k ≥ 4), tức là ta có: Số đường chéo của một đa giác k cạnh (k ≥ 4) là
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: Số đường chéo của một đa giác (k + 1) cạnh (k ≥ 4) là
Thật vậy, xét đa giác (k + 1) cạnh A1A2...AkAk + 1, nối hai đỉnh A1 và Ak ta được đa giác k cạnh A1A2...Ak. Theo giả thiết quy nạp đa giác k cạnh này có đường chéo.
Các đường chéo còn lại của đa giác (k + 1) cạnh ngoài đường chéo này là các đoạn nối Ak + 1 với các đỉnh từ A2 đến Ak – 1 và đoạn A1Ak (màu đỏ). Tổng cộng có (k – 1) đường.
Vậy tổng số đường chéo của đa giác (k + 1) cạnh là:
+ (k – 1) =
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 4.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247