Tính chất của các số
a) Quan sát ba dòng đầu, hoàn thành tiếp hai dòng cuối theo mẫu:
(a + b)1 = a + b
(a + b)2 = a2 + 2ab + b2
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 = ...
(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 = ...
Nhận xét rằng các hệ số khai triển của hai số hạng cách đều số hạng đầu và số hạng cuối luôn bằng nhau. Hãy so sánh, chẳng hạn, và , và . Từ đó hãy dự đoán hệ thức giữa và (0 ≤ k ≤ n).
b) Dựa vào kết quả của HĐ3a, ta có thể viết những hàng đầu của tam giác Pascal dưới dạng:
(a + b)1
(a + b)2
(a + b)3
(a + b)4
(a + b)5
Từ tính chất của tam giác Pascal, hãy so sánh và và Từ đó hãy dự đoán hệ thức giữa và
a) (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 = a4 + a3b + a2b2 + ab3 + b4.
(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
= a5 + a4b + a3b2 + a2b3 + ab4 + b5.
Ta thấy = , = ,...
Dự đoán: = .
b) Ta thấy = =
Dự đoán: =
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247