Tìm phương trình của parabol (P): y = ax2 + bx + c (a ≠ 0), biết: a) Parabol (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x = –2; x = 1 và đi qua điểm M(–1; 3)...

Câu hỏi :

Tìm phương trình của parabol (P): y = ax2 + bx + c (a ≠ 0), biết:

a) Parabol (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x = –2; x = 1 và đi qua điểm M(–1; 3);

b) Parabol (P) cắt trục tung tại điểm có tung độ y = –2 và hàm số đạt giá trị nhỏ nhất bằng –4 tại x = 2.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

a) (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x = –2; x = 1{0=a(2)2+b(2)+c0=a.12+b.1+c{4a2b+c=0   (1)a+b+c=0        (2).

(P) đi qua điểm M(–1; 3) =>  3 = a(–1)2 + b(–1) + c => a – b + c = 3 (3).

Từ (1), (2) và (3) ta có hệ phương trình: {4a2b+c=0a+b+c=0ab+c=3.

Giải hệ này ta được a = 32, b = 32, c = 3.

Vậy phương trình của (P) là y = 32x232x+3.

b) (P) cắt trục tung tại điểm có tung độ y = –2 => –2 = a . 02 + b . 0 + c hay c = –2 (1).

Hàm số đạt giá trị nhỏ nhất bằng –4 tại x = 2

{b2a=24=a.22+b.2+c{4a+b=0     (2)4a+2b+c=4   (3).

Từ (1), (2) và (3) ta có hệ phương trình: {c=24a+b=04a+2b+c=4.

Giải hệ này ta được a = 12, b = –2, c = –2.

Vậy phương trình của (P) là y = 12x2 – 2x – 2.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Cuối chuyên đề 1 có đáp án !!

Số câu hỏi: 24

Copyright © 2021 HOCTAP247