Cho Sn = 1/(1.5) + 1/(5.9) + 1/(9.13) + + 1/((4n - 3)(4n + 1), với n thuộc N*

Câu hỏi :

Cho Sn=11.5+15.9+19.13++1(4n3)(4n+1), với n  *.

a) Tính S1, S2, S3, S4.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

* Đáp án

* Hướng dẫn giải

a) S1=11.5=15, S2=11.5+15.9=29,S3=11.5+15.9+19.13=313,

S4=11.5+15.9+19.13+113.17=417.

b) Ta dự đoán Sn=n4n+1.

+) Khi n = 1, ta có: S1=15=14.1+1.

Vậy mệnh đề đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: Sk+1=k+14k+1+1.

Thật vậy, theo giả thiết quy nạp ta có: Sk=k4k+1.

Khi đó:

Sk+1=11.5+15.9+19.13++1(4n3)(4n+1)+14k+134k+1+1

=Sk+14k+134k+1+1

=k4k+1+14k+134k+1+1

=k4k+1+14k+14k+1+1

=k4k+1+14k+14k+1+1+14k+14k+1+1

=k4k+54k+14k+1+1+14k+14k+1+1

=4k2+5k4k+14k+1+1+14k+14k+1+1

=4k2+5k+14k+14k+1+1

=4k+1k+14k+14k+1+1

=k+14k+1+1.

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n  *. Vậy Sn=n4n+1 với n  *.

Copyright © 2021 HOCTAP247