Bằng phương pháp quy nạp, chứng minh: a) n^5 – n chia hết cho 5

Câu hỏi :

Bằng phương pháp quy nạp, chứng minh:

* Đáp án

* Hướng dẫn giải

a)

+) Với n = 1, ta có: 151 = 0 ⁝ 5.

Vậy mệnh đề đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: (k + 1)5(k + 1) ⁝ 5.

Thật vậy, theo giả thiết quy nạp ta có: k5k ⁝ 5.

Khi đó:

(k + 1)5(k + 1)

   đều chia hết cho 5, do đó

 ⁝ 5 hay (k + 1)5(k + 1) ⁝ 5.

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n*.

b)

+) Với n = 1, ta có: 171 = 0 ⁝ 7.

Vậy mệnh đề đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: (k + 1)7(k + 1) ⁝ 7.

Thật vậy, theo giả thiết quy nạp ta có: k7k ⁝ 7.

Khi đó:

(k + 1)7(k + 1)

   đều chia hết cho 7, do đó

 ⁝ 7 hay (k + 1)7(k + 1) ⁝ 7.

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n*.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Chuyên đề Nhị thức Newton có đáp án !!

Số câu hỏi: 23

Copyright © 2021 HOCTAP247