Chứng minh rằng với mọi n :
a) 3n – 1 – 2n chia hết cho 4;
b) 7n – 4n – 3n chia hết cho 12.
Hướng dẫn giải
a) Bước 1. Với n = 1, ta có 31 – 1 – 2 . 1 = 0 ⁝ 4. Do đó khẳng định đúng với n = 1.
Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, nghĩa là có: 3k – 1 – 2k ⁝ 4.
Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:
3k + 1 – 1 – 2(k + 1) ⁝ 4.
Sử dụng giả thiết quy nạp, ta có:
3k + 1 – 1 – 2(k + 1) = 3 . 3k – 1 –2k – 2 = 3 . 3k – 3 –2k = 3 . 3k – 3 –6k + 4k
= 3(3k – 1 – 2k) + 4k
Vì (3k – 1 – 2k) và 4k đều chia hết cho 4 nên 3(3k – 1 – 2k) + 4k ⁝ 4 hay 3k + 1 – 1 – 2(k + 1) ⁝ 4.
Vậy khẳng định đúng với n = k + 1.
Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.
b) Bước 1. Với n = 1, ta có 71 – 41 – 31 = 0 ⁝ 12. Do đó khẳng định đúng với n = 1.
Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, nghĩa là có: 7k – 4k – 3k ⁝ 12.
Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:
7k + 1 – 4k + 1 – 3k + 1 ⁝ 12.
Sử dụng giả thiết quy nạp, ta có:
7k + 1 – 4k + 1 – 3k + 1 = 7 . 7k – 4 . 4k – 3 . 3k = 7 . 7k – 7 . 4k – 7 . 3k + 3 . 4k + 4 . 3k
= 7(7k – 4k – 3k) + 3 . 4k + 4 . 3k = 7(7k – 4k – 3k) + 12 . 4k – 1 + 12 . 3k – 1 (vì k ≥ 1).
Vì 7(7k – 4k – 3k), 12 . 4k – 1 và 12 . 3k – 1 đều chia hết cho 12 nên 7(7k – 4k – 3k) + 12 . 4k – 1 + 12 . 3k – 1 ⁝ 12 hay 7k + 1 – 4k + 1 – 3k + 1 ⁝ 12.
Vậy khẳng định đúng với n = k + 1.
Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247