Chứng minh rằng n3 + 2n chia hết cho 3 với mọi n thuộc N*.

Câu hỏi :

Chứng minh rằng n3 + 2n chia hết cho 3 với mọi n*.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Bước 1. Với n = 1, ta có 13 + 2 . 1 = 3 ⁝ 3. Do đó khẳng định đúng với n = 1.

Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, nghĩa là có: k3 + 2k ⁝ 3.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

(k + 1)3 + 2(k + 1) ⁝ 3.

Sử dụng giả thiết quy nạp, ta có:

(k + 1)3 + 2(k + 1) = k3 + 3k2 + 3k + 1 + 2k + 2 = (k3 + 2k) + (3k2 + 3k + 3)

Vì (k3 + 2k) và (3k2 + 3k + 3) đều chia hết cho 3 nên (k3 + 2k) + (3k2 + 3k + 3) ⁝ 3 hay (k + 1)3 + 2(k + 1) ⁝ 3.

Vậy khẳng định đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n 1.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Phương pháp quy nạp toán học có đáp án !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247