Chứng minh các đẳng thức sau đúng với mọi n thuộc N*: a) 1.2 + 2.3 + 3.4 +...+ n.(n-1) = n(n+1)(n+2)/3

Câu hỏi :

Chứng minh các đẳng thức sau đúng với mọi n*:

a) 1.2+2.3+3.4++n.(n+1)=n(n+1)(n+2)3;

b) 1+4+9++n2=n(n+1)(2n+1)6;

c) 1+2+22+23+24++2n1=2n1.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

a) Bước 1. Với n = 1, ta có 1(1 + 1) = 2 = 1(1+1)(1+2)3. 

Do đó đẳng thức đúng với n = 1.

Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:1.2+2.3+3.4++k.(k+1)=k(k+1)(k+2)3.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:1.2+2.3+3.4++k.(k+1)+(k+1)[(k+1)+1]=(k+1)[(k+1)+1][(k+1)+2]3.

Sử dụng giả thiết quy nạp, ta có:

1.2+2.3+3.4++k.(k+1)+(k+1)[(k+1)+1]

=k(k+1)(k+2)3+(k+1)(k+2)

=k(k+1)(k+2)3+3(k+1)(k+2)3

=(k+1)(k+2)(k+3)3

=(k+1)[(k+1)+1][(k+1)+2]3.

Vậy đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n 1.

b) Bước 1. Với n = 1, ta có 12 = 1 = 1(1+1)(2.1+2)6. 

Do đó đẳng thức đúng với n = 1.

Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:

1+4+9++k2=k(k+1)(2k+1)6.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:1+4+9++k2+(k+1)2=(k+1)[(k+1)+1][2(k+1)+1]6.

Sử dụng giả thiết quy nạp, ta có:

1+4+9++k2+(k+1)2

=k(k+1)(2k+1)6+(k+1)2

=k(k+1)(2k+1)6+6(k+1)26

=k+16[k(2k+1)+6(k+1)]

=k+16[2k2+7k+6]

=k+16(k+2)(2k+3)

=k+16[(k+1)+1][2(k+1)+1]

 
=(k+1)[(k+1)+1][2(k+1)+1]6.

Vậy đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n 1.

c) Bước 1. Với n = 1, ta có 21 – 1 = 20 = 1 = 21 – 1.

Do đó đẳng thức đúng với n = 1.

Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:

1+2+22+23+24++2k1=2k1.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

1+2+22+23+24++2k1+2(k+1)1=2k+11.

Sử dụng giả thiết quy nạp, ta có:

1+2+22+23+24++2k1+2(k+1)1

=(2k1)+2(k+1)1

=2k1+2k

=2.2k1

=2k+11.

Vậy đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n 1.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Phương pháp quy nạp toán học có đáp án !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247