Cho elip (E): x^2/25 + y^2/9 = 1. Tìm toạ độ điểm M thuộc (E) sao cho độ dài F2M

Câu hỏi :

Cho elip (E):x225+y29=1. Tìm toạ độ điểm M (E) sao cho độ dài F2M lớn nhất, biết F2 là một tiêu điểm có hoành độ dương của (E).

* Đáp án

* Hướng dẫn giải

Elip (E) có phương trình x225+y29=1 a2 = 25 và b2 = 9  a = 5 và b = 3.

c2 = a2 – b2 = 25 – 9 = 16  c = 4.

Gọi toạ độ của M là (x; y). Áp dụng công thức bán kính qua tiêu ta có:

MF2 = a – ex = a – cax = 5 – 45x.

x ≥ –a hay x ≥ –5 45x 45. (–5)  45x –5

MF2 5 – 45. (–5)  MF2 ≤ 9.

Đẳng thức xảy ra khi x = –5.

Vậy độ dài F2M lớn nhất khi M có toạ độ (–5; 0).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Elip có đáp án !!

Số câu hỏi: 50

Copyright © 2021 HOCTAP247