Cho elip (E): x^2/25 + y^2/9 = 1. a) Xác định toạ độ các đỉnh, tiêu điểm và tìm tâm sai của (E). b) Viết phương trình chính tắc của parabol (P) có tiêu điểm là tiêu điểm có hoành đ...

Câu hỏi :

Cho elip (E):x225+y29=1.

a) Xác định toạ độ các đỉnh, tiêu điểm và tìm tâm sai của (E).

b) Viết phương trình chính tắc của parabol (P) có tiêu điểm là tiêu điểm có hoành độ dương của (E).

c) Viết phương trình chính tắc của hypebol (H) có hai đỉnh là hai tiêu điểm của (E), hai tiêu điểm là hai đỉnh của (E). Tìm tâm sai của (H).

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

a) Có a2 = 25, b2 = 9 =>  a = 5, b = 3, c=a2b2=259=4,  ca=45.

Toạ độ các đỉnh của elip là A1(–5; 0), A2(5; 0), B1(0; –3), B2(0; 3).

Toạ độ các tiêu điểm của elip là F1(–4; 0), F2(4; 0).

Tâm sai của elip là e = 4/5

b) Gọi phương trình chính tắc của (P) là y2 = 2px (p > 0).

(P) có tiêu điểm là F2(4; 0) => p/2 = 4 => p = 8

=> Phương trình chính tắc của parabol (P) là y2 = 16x.

c) Gọi phương trình chính tắc của (H) là x2a2y2b2=1 (a > 0, b > 0).

(H) có hai đỉnh là F1(–4; 0), F2(4; 0); hai tiêu điểm là A1(–5; 0), A2(5; 0)

=> a = 4, c = 5 => b = c2a2=5242=3.

Vậy phương trình chính tắc của (H) là x216y29=1.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Cuối chuyên đề 3 có đáp án !!

Số câu hỏi: 14

Copyright © 2021 HOCTAP247