a) Tính độ dài hai bán kính qua tiêu của điểm M(x; y) trên elip (E)

Câu hỏi :

a) Tính độ dài hai bán kính qua tiêu của điểm M(x; y) trên elip (E): x264+y236=1.

b) Tìm các điểm trên elip (E):x2a2+y2b2=1 có độ dài hai bán kính qua tiêu bằng nhau.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

a) Cóa2 = 64, b2 = 36 => a = 8, b = 6 c=a2b2=28=27.

Độ dài hai bán kính qua tiêu của M(x; y) là:

MF1 = a + c/a x = 8 + 278x = 8 + 74x; MF2 = a – cax = 8 – 278x = 8 – 74x.

b) Giả sử M(x; y) nằm trên (E) thoả mãn đề bài. Khi đó:

MF1 = MF2 <=> 8 +  = 8 –74x; => x = 0 [y=6y=6.

Vậy có hai điểm thoả mãn đề bài là M1(0; 6) và M2(0; –6).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Elip có đáp án !!

Số câu hỏi: 50

Copyright © 2021 HOCTAP247