Tìm các điểm trên elip (E): x^2/a^2 + y^2/b^2 = 1 có độ dài hai bán kính qua tiêu nhỏ nhất, lớn nhất.

Câu hỏi :

Tìm các điểm trên elip (E): x2a2+y2b2=1 có độ dài hai bán kính qua tiêu nhỏ nhất, lớn nhất.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Xét điểm M có toạ độ là (x; y).

+) Xét khoảng cách từ M đến F1.

Theo công thức độ dài bán kính qua tiêu ta có MF1 = a + cax.

Mặt khác, vì M thuộc elip nên –a ≤ x ≤ a

 ca.(a)caxca.accaxcaca+caxa+c.

Vậy a – c ≤ MF1 ≤ a + c.

Vậy độ dài MF1 nhỏ nhất bằng a – c khi M có hoành độ là –a, lớn nhất bằng a + c khi M có hoành độ bằng a.

+) Xét khoảng cách từ M đến F2.

Theo công thức độ dài bán kính qua tiêu ta có MF2 = a – cax.

Mặt khác, vì M thuộc elip nên –a ≤ x ≤ a

 ca.(a)caxca.accaxcccaxca+ca+caxac.

Vậy a + c ≥ MF2 ≥ a – c.

Vậy độ dài MF2 nhỏ nhất bằng a – c khi M có hoành độ là a, lớn nhất bằng a + c khi M có hoành độ bằng –a.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Elip có đáp án !!

Số câu hỏi: 50

Copyright © 2021 HOCTAP247