Một vật thể có quỹ đạo là một nhánh của hypebol (H), nhận tâm Mặt Trời làm tiêu điểm (Hình 6). Cho biết tâm sai của (H) bằng 1,2 và khoảng cách gần nhất giữa vật thể và tâm Mặt Trờ...

Câu hỏi :

Một vật thể có quỹ đạo là một nhánh của hypebol (H), nhận tâm Mặt Trời làm tiêu điểm (Hình 6). Cho biết tâm sai của (H) bằng 1,2 và khoảng cách gần nhất giữa vật thể và tâm Mặt Trời là 2 . 108 km.

a) Lập phương trình chính tắc của (H).

b) Lập công thức tính bán kính qua tiêu của vị trí M(x; y) của vật thể trong mặt phẳng toạ độ.

Một vật thể có quỹ đạo là một nhánh của hypebol (H), nhận tâm Mặt Trời làm tiêu điểm (Hình 6). Cho biết tâm sai của (H) bằng 1,2 và khoảng cách gần nhất giữa vật thể và tâm Mặt Trời là 2 . 108 km. a) Lập phương trình chính tắc của (H). b) Lập công thức tính bán kính qua tiêu của vị trí M(x; y) của vật thể trong mặt phẳng toạ độ. (ảnh 1)

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

a) Chọn hệ trục toạ độ sao cho tiêu điểm F2 của (H) trùng với tâm Mặt Trời, trục Ox đi qua đỉnh và tiêu điểm này của (H), đơn vị trên các trục là km.

Gọi phương trình chính tắc của (H) là x2a2y2b2=1 (a > 0, b > 0).

Gọi toạ độ của vật thể là M(x; y).

Áp dụng công thức bán kính qua tiêu, ta có: khoảng cách giữa vật thể và tâm Mặt Trời là MF2 = |acax|=|aex| = ex – a ≥ ea – a (vì vật thể nằm ở nhánh bên phải trục Ox nên x ≥ a).

Như vậy khoảng cách gần nhất giữa vật thể và tâm Mặt Trời là ea – a

=> ea – a = 2 . 108 => 1,2a – a = 2 . 108 => a = 109 =>c = ea = 1,2 . 109

b2=c2a2=(1,2.109)2(109)2=0,44.1018.

Vậy phương trình chính tắc của (H) là x21018y20,44.1018=1.

b) Bán kính qua tiêu của vị trí M(x; y) của vật thể trong mặt phẳng toạ độ là:

MF2 = |acax|=|aex| = |109 – 1,2x| (km).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Hypebol có đáp án !!

Số câu hỏi: 31

Copyright © 2021 HOCTAP247