Cho điểm M(x; y) trên hypebol (H): x^2/a^2 - y^2/b^2 =1 và hai đường thẳng

Câu hỏi :

Cho điểm M(x; y) trên hypebol (H):x2a2y2b2=1 và hai đường thẳng Δ1:x+ae=0; Δ2:xae=0 (Hình 7).

Cho điểm M(x; y) trên hypebol (H): x^2/a^2 - y^2/b^2 =1  và hai đường thẳng (ảnh 1)

Gọi d(M; Δ1), d(M; Δ2) lần lượt là khoảng cách từ M đến các đường thẳng Δ1, Δ2.

Ta có: MF1d(M;Δ1)=|a+ex||x+ae|=|a+ex||a+ex|e=e.

Dựa theo cách tính trên, tính MF2d(M;Δ2).

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Ta viết lại phương trình đường thẳng Δ2 ở dạng: x+0yae=0. Với mỗi điểm M(x; y) thuộc hypebol, ta có: d(M,Δ2)=|x+0yae|12+02=|xae|.

suy ra MF2d(M,Δ2)=|aex||xae|=|aex||xeae|=e.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Hypebol có đáp án !!

Số câu hỏi: 31

Copyright © 2021 HOCTAP247