Một sao chổi A chuyển động theo quỹ đạo có dạng một parabol (P) nhận tâm Mặt Trời là tiêu điểm. Cho biết khoảng cách ngắn nhất giữa sao chổi A và tâm Mặt Trời là khoảng 112 km.
a) Viết phương trình chính tắc của parabol (P).
b) Tính khoảng cách giữa sao chổi A và tâm Mặt Trời khi sao chổi nằm trên đường thẳng đi qua tiêu điểm và vuông góc với trục đối xứng của (P).
Hướng dẫn giải
a) Chọn hệ trục toạ độ sao cho gốc toạ độ O trùng với đỉnh của parabol, tâm Mặt Trời trùng với tiêu điểm của parabol, đơn vị trên các trục là kilômét.
Gọi phương trình chính tắc của (P) là = 2px (p > 0).
Gọi F là tiêu điêm của (P), (x; y) là toạ độ của sao chổi A.
Khi đó khoảng cách giữa sao chổi A và tâm Mặt Trời là AF = ≥ p/2 (vì x ≥ 0)
=> khoảng cách ngắn nhất giữa sao chổi A và tâm Mặt Trời là p/2 (km)
=>
Vậy phương trình chính tắc của (P) là y2 = 448x.
b) Khi sao chổi nằm trên đường thẳng đi qua tiêu điểm và vuông góc với trục đối xứng của (P) thì sao chổi có hoành độ là x=p/2
Khoảng cách giữa sao chổi A và tâm Mặt Trời khi đó là:
AF = (km).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247