Cho hình bình hành ABCD có tâm O. Tìm ba điểm M, N, P thỏa mãn:
a) ;
b) ;
c) .
a) Gọi M là trọng tâm tam giác ADB.
Khi đó ta có: .
Vậy điểm M thỏa mãn là trọng tâm của tam giác ADB.
b) Tương tự câu a, điểm N thỏa mãn là trọng tâm của tam giác DBC.
c) ABCD là hình bình hành có tâm O nên O là giao của hai đường chéo AC và BD, đồng thời là trung điểm của mỗi đường.
Khi đó AO là đường trung tuyến của tam giác ABD nên trọng tâm M của tam giác này nằm trên cạnh AO thỏa mãn AM = AO nên OM = AO.
Và CO là đường trung tuyến của tam giác BDC nên trọng tâm N của tam giác này nằm trên cạnh CO thỏa mãn CN = CO nên ON = CO.
Mà AO = CO.
Do đó: ON = OM.
Và O, M, N thẳng hàng (cùng thuộc đường chéo AC).
Nên O là trung điểm của MN.
Suy ra .
Mà nên điểm P trùng với điểm O.
Vậy điểm P thỏa mãn là tâm O của hình bình hành ABCD.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247