Một hằng số quan trọng trong toán học là số e có giá trị gần đúng với 12 chữ số thập phân là 2,718281828459.
a) Giả sử ta lấy giá trị 2,7 làm giá trị gần đúng của e. Hãy chứng tỏ sai số tuyệt đối không vượt quá 0,02 và sai số tương đối không vượt quá 0,75%.
b) Hãy quy tròn e đến hàng phần nghìn.
c) Tìm số gần đúng của số e với độ chính xác 0,00002.
a) Sai số tuyệt đối ∆ = |2,718281828459 – 2,7| = 0,018281828459 < 0,02.
Sai số tương đối < 0,75%.
b) Quy tròn e đến hàng phần nghìn ta được số gần đúng là 2,718.
c) Hàng của chữ số khác 0 đầu tiên bên trái của độ chính xác d = 0,00002 là hàng phần trăm nghìn. Quy tròn e đến hàng phần trăm nghìn ta được số gần đúng của e là 2,71828.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247