B. Bài tập
Xét dấu các tam thức bậc hai sau:
a) 3x2 – 4x + 1;
b) x2 + 2x + 1;
c) – x2 + 3x – 2;
d) – x2 + x – 1.
Hướng dẫn giải
a) f(x) = 3x2 – 4x + 1 có ∆' = (– 2)2 – 3 . 1 = 1 > 0, hệ số a = 3 > 0 và có hai nghiệm phân biệt x1 = \(\frac{1}{3}\); x2 = 1.
Do đó ta có bảng xét dấu f(x):
x |
– ∞ \(\frac{1}{3}\) 1 + ∞ |
f(x) |
+ 0 – 0 + |
Suy ra f(x) > 0 với mọi \(x \in \left( { - \infty ;\frac{1}{3}} \right) \cup \left( {1; + \infty } \right)\) và f(x) < 0 với mọi \(x \in \left( {\frac{1}{3};1} \right)\).
b) f(x) = x2 + 2x + 1 có ∆' = 12 – 1 . 1 = 0 và a = 1 nên f(x) có nghiệm kép x = – 1 và f(x) > 0 với mọi x ≠ – 1.
c) f(x) = – x2 + 3x – 2 có ∆ = 32 – 4 . (– 1) . (– 2) = 1 > 0, hệ số a = – 1 < 0 và có hai nghiệm phân biệt x1 = 1; x2 = 2.
Do đó ta có bảng xét dấu f(x):
x |
– ∞ 1 2 + ∞ |
f(x) |
– 0 + 0 – |
Suy ra f(x) > 0 với mọi x ∈ (1; 2) và f(x) < 0 với mọi x ∈ (– ∞; 1) ∪ (2; + ∞).
d) f(x) = – x2 + x – 1 có ∆ = 12 – 4 . (– 1) . (– 1) = – 3 < 0 và hệ số a = – 1 < 0 nên f(x) < 0 với mọi \(x \in \mathbb{R}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247