Hướng dẫn giải
a) Tam thức f(x) = x2 – 1 có ∆ = 02 – 4 . 1 . (– 1) = 4 > 0 nên f(x) có hai nghiệm x1 = – 1 và x2 = 1.
Mặt khác hệ số a = 1 > 0, do đó ta có bảng xét dấu sau:
x |
– ∞ – 1 1 + ∞ |
f(x) |
+ 0 – 0 + |
Tập nghiệm của bất phương trình là S = (– ∞; – 1] ∪ [1; + ∞).
b) Tam thức f(x) = x2 – 2x – 1 có ∆' = (– 1)2 – 1 . (– 1) = 2 > 0 nên f(x) có hai nghiệm x1 = 1 \( - \sqrt 2 \) và x2 = 1 + \(\sqrt 2 \).
Mặt khác hệ số a = 1 > 0, do đó ta có bảng xét dấu sau:
x |
– ∞ 1 \( - \sqrt 2 \) 1 + \[\sqrt 2 \] + ∞ |
f(x) |
+ 0 – 0 + |
Vậy tập nghiệm của bất phương trình là S = \(\left( {1 - \sqrt 2 ;\,1 + \sqrt 2 } \right)\).
c) Tam thức f(x) = – 3x2 + 12x + 1 có ∆' = 62 – (– 3) . 1 = 39 > 0 nên f(x) có hai nghiệm \({x_1} = \frac{{6 - \sqrt {39} }}{3}\) và \({x_2} = \frac{{6 + \sqrt {39} }}{3}\).
Mặt khác hệ số a = – 3 < 0, do đó ta có bảng xét dấu sau:
x |
– ∞ \(\frac{{6 - \sqrt {39} }}{3}\) \(\frac{{6 + \sqrt {39} }}{3}\) + ∞ |
f(x) |
– 0 + 0 – |
Vậy tập nghiệm của bất phương trình là S = \(\left( { - \infty ;\frac{{6 - \sqrt {39} }}{3}} \right] \cup \left[ {\frac{{6 + \sqrt {39} }}{3}; + \infty } \right)\).
d) Tam thức f(x) = 5x2 + x + 1 có ∆ = 12 – 4 . 5 . 1 = – 19 < 0 và hệ số a = 5 > 0 nên f(x) luôn dương (cùng dấu a) với mọi \(x \in \mathbb{R}\).
Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247