Hướng dẫn giải
a) Phương trình x2 + y2 + xy + 4x – 2 = 0 không có dạng x2 + y2 – 2ax – 2by + c = 0 với a, b, c là các số thực nên đây không phải phương trình đường tròn.
b) x2 + y2 – 2x – 4y + 5 = 0 ⇔ x2 + y2 – 2 . 1 . x – 2 . 2 . y + 5 = 0.
Các hệ số: a = 1, b = 2, c = 5.
Ta có: a2 + b2 – c = 12 + 22 – 5 = 0 nên đây cũng không phải phương trình đường tròn.
c) x2 + y2 + 6x – 8y + 1 = 0 ⇔ x2 + y2 – 2 . (– 3) . x – 2 . 4 . y + 1 = 0.
Các hệ số: a = – 3, b = 4, c = 1.
Ta có: a2 + b2 – c = (– 3)2 + 42 – 1 = 24 > 0 nên đây là phương trình đường tròn.
Đường tròn này có tâm I(– 3; 4) và bán kính R = \(\sqrt {24} \) = 2\(\sqrt 6 \).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247