Cho parabol (P): y = 1/4x2. Xét F(0; 1) và đường thẳng Δ: y + 1 = 0. Với điểm M(x; y) bất kì, chứng minh rằng MF = d(M, Δ) ⇔ M(x; y) thuộc (P).
Hướng dẫn giải
Ta có: MF = .
d(M, ∆) = .
+) Giả sử MF = d(M, ∆), ta cần chứng minh M(x; y) thuộc (P).
Thật vậy, MF = d(M, ∆)
Bình phương cả hai vế của phương trình trên ta được:
x2 + (y – 1)2 = (y + 1)2
⇔ x2 – 4y = 0 ⇔ y = 1/4x2.
Vậy M thuộc (P).
+) Giả sử M(x; y) thuộc (P), ta cần chứng minh MF = d(M, Δ).
M(x; y) thuộc (P) nên y = 1/4x2 hay x2 = 4y, thay vào biểu thức tính MF ta có:
MF =
= = d(M, ∆).
Vậy MF = d(M, Δ).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247