Từ các chữ số: 1; 2; 3; 4; 5; 6. a) Có thể lập được bao nhiêu số có ba chữ số khác nhau? b) Có thể lập được bao nhiêu số có ba chữ số khác nhau và chia hết cho

Câu hỏi :

Từ các chữ số: 1; 2; 3; 4; 5; 6.

a) Có thể lập được bao nhiêu số có ba chữ số khác nhau?

b) Có thể lập được bao nhiêu số có ba chữ số khác nhau và chia hết cho 3 ?

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

a) Mỗi cách lập một số có 3 chữ số khác nhau là việc lấy 3 phần tử từ tập chữ số: 1; 2; 3; 4; 5; 6, rồi sắp xếp chúng, nên mỗi cách lập số là một chỉnh hợp chập 3 của 6.

Vậy có \(A_6^3\) = 120 số có ba chữ số khác nhau thỏa mãn.

b) Số chia hết cho 3 thì tổng các chữ số của số đó phải chia hết cho 3.

Ta có các bộ ba có tổng chia hết cho 3 là: (1; 2; 3), (1; 2; 6), (1; 3; 5), (1; 5; 6), (2; 3; 4), (2; 4; 6), (3; 4; 5), (4; 5; 6).

Mỗi bộ ba có 3! cách sắp xếp để được một số chia hết cho 3.

Vậy số các số có 3 chữ số khác nhau được lập từ các chữ số: 1; 2; 3; 4; 5; 6, chia hết cho 3 là: 8 . 3! = 48 (số).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Cuối chương 8 có đáp án !!

Số câu hỏi: 20

Copyright © 2021 HOCTAP247