Hướng dẫn giải
Vì mỗi hộp có chứa 5 tấm thẻ nên rút từ hộp I một tấm thẻ thì có 5 cách, từ hộp II tương tự cũng có 5 cách.
Do đó, số khả năng xảy ra khi rút mỗi hộp 1 thẻ là: 5 . 5 = 25, hay n(Ω) = 25.
(Vì ta thực hiện liên tiếp 2 công đoạn, rút từ hộp I, rồi rút hộp II nên áp dụng quy tắc nhân).
Không gian mẫu được mô tả trong bảng sau:
1 |
2 |
3 |
4 |
5 |
|
1 |
11 |
12 |
13 |
14 |
15 |
2 |
21 |
22 |
23 |
24 |
25 |
3 |
31 |
32 |
33 |
34 |
35 |
4 |
41 |
42 |
43 |
44 |
45 |
5 |
51 |
52 |
53 |
54 |
55 |
Gọi biến cố A: “Thẻ rút ra từ hộp II mang số lớn hơn số trên thẻ rút ra từ hộp I”.
Khi đó, A = {12; 13; 14; 15; 23; 24; 25; 34; 35; 45}.
⇒ n(A) = 10.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{10}}{{25}} = \frac{2}{5}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247