Có hộp I và hộp II, mỗi hộp chứa 5 tấm thẻ đánh số từ 1 đến 5. Từ mỗi hộp, rút ngẫu nhiên ra một tấm thẻ. Tính xác suất để thẻ rút ra từ hộp II mang số lớn hơn số trên thẻ rút ra t...

Câu hỏi :

hộp I và hộp II, mỗi hộp chứa 5 tấm thẻ đánh số từ 1 đến 5. Từ mỗi hộp, rút ngẫu nhiên ra một tấm thẻ. Tính xác suất để thẻ rút ra từ hộp II mang số lớn hơn số trên thẻ rút ra từ hộp I.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Vì mỗi hộp có chứa 5 tấm thẻ nên rút từ hộp I một tấm thẻ thì có 5 cách, từ hộp II tương tự cũng có 5 cách.

Do đó, số khả năng xảy ra khi rút mỗi hộp 1 thẻ là: 5 . 5 = 25, hay n(Ω) = 25.

(Vì ta thực hiện liên tiếp 2 công đoạn, rút từ hộp I, rồi rút hộp II nên áp dụng quy tắc nhân).

Không gian mẫu được mô tả trong bảng sau:

 

1

2

3

4

5

1

11

12

13

14

15

2

21

22

23

24

25

3

31

32

33

34

35

4

41

42

43

44

45

5

51

52

53

54

55

 Gọi biến cố A: “Thẻ rút ra từ hộp II mang số lớn hơn số trên thẻ rút ra từ hộp I”.

Khi đó, A = {12; 13; 14; 15; 23; 24; 25; 34; 35; 45}.

 n(A) = 10.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{10}}{{25}} = \frac{2}{5}\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Cuối chương 9 có đáp án !!

Số câu hỏi: 15

Copyright © 2021 HOCTAP247